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Conical diffraction in honeycomb lattices is analyzed.

This phenomena arises in nonlinear

Schrédinger (NLS) equations with honeycomb lattice potentials. In the tight binding approximation
the wave envelope is governed by a nonlinear Dirac equation. Numerical simulations show that the
Dirac equation and the lattice equation have the same conical diffraction properties. Similar conical
diffraction occurs in both the linear and nonlinear regimes. The Dirac system reveals the underlying
mechanism for the existence of conical diffraction in honeycomb lattices.

PACS numbers:

Conical diffraction is a fundamental feature of crys-
tal optics and is of interest in mathematics and physics.
Conical diffraction is the mechanism under which a nar-
row beam entering a biaxial crystal along its optic axis
spreads into a hollow cone within the crystal. This phe-
nomenon was first predicted by W. Hamilton [1] in 1832
and observed by H. Lloyd [2] soon afterwards. It has been
studied experimentally and theoretically over the years
(see the important article by M. Berry and M. Jeffrey
[3]). A key property associated with conical diffraction is
the existence of so-called diabolical points where two dif-
ferent dispersion surfaces touch each other. Interestingly
the conical diffraction phenomenon also exists in the light
beam propagation in honeycomb lattices as shown in re-
cent work both experimentally and numerically [7, 9].

It is well-known that the material graphene has honey-
comb lattice structure. In the graphene literature, it has
been shown that two different energy bands can touch
each other at certain isolated points which are called
Dirac points; i.e. such Dirac points are diabolical points.
Thus diabolical points also exist in the band structure of
two-dimensional honeycomb lattices. Moreover the struc-
ture of the dispersion relation near these Dirac points are
conical in nature [5, 6]; the regions in the neighborhood
of Dirac points are called Dirac cones.

Like optics, Bose-Einstein condensation (BEC) can
have lattice backgrounds and they both are governed by
lattice NLS equations. Recently, a nonlinear Dirac equa-
tion describing a weakly interacting bosonic gas in the
presence of a honeycomb optical lattice for BEC [4] was
derived. The Dirac points in BEC are thus diabolical
points.

In this paper we derive the evolution equations for
the wave envelope of the Bloch modes in the vicinity
of diabolical points directly from the lattice nonlinear
Schrédinger equation; a similar derivation can also be
employed on the nonlinear optical Helmholtz equation.
It turns out that the governing equation is nonlinear
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FIG. 1: The honeycomb lattice (top left) and its first two
bands (top right). The physical and reciprocal lattice are
depicted (top left and right respectively). Shadow regions
in the lattice and reciprocal lattice are the unit cell €2 and
Brillouin zone '

Dirac system, consistent with the derivation via Hamil-
tonian methods in graphene and BEC ([5, 6],[4]). The
linear part of the Dirac system yields a dispersion rela-
tion which is the same as that obtained from the two-
dimensional wave equation; this is the same dispersion
relation as that of crystal optics [3] and helps explain
why the beam propagates in a conical manner. This is
further supported by simulations of the Dirac and lat-
tice NLS equations and it is found that the same coni-
cal diffraction phenomena occurs in both systems. Thus
we associate the conical diffraction phenomena in honey-
comb lattices with Dirac type systems. In fact we find
conical diffraction in both the linear and nonlinear Dirac
system.

The governing equation for a light beam propagating in
a 2-D lattice is the lattice nonlinear Schrédinger equation

ih, + V2 = V(r)yp + oyp|*y = 0. (1)

Here o, the coefficient of nonlinear term, is positive for
focusing nonlinearity and negative for defocusing nonlin-
earity; V(r) is the 2-D periodic potential and r = (z, y).
In photonic lattices, a model which has also been widely



used is the saturable lattice NLS equation (cf. [8]). While
the analysis on the lattice NLS equation below employs a
linear potential and cubic nonlinearity, it can be readily
extended to a saturable-type potential term.

The potential V(r) we study is a honeycomb lattice.
In this lattice, the local minima which we call sites form
hexagons. The hexagonal lattice is usually generated by
interacting three plane waves. We take the following lat-
tice potential as our prototype

;o (2)

where by = (0,1), by = (=%, —}) and by = (3, —3);
Vo > 0 is the lattice intensity. This V (r) is a honeycomb
lattice with intensity minima at the hexagonal vertices.

The lattice has two periods (lattice vectors)

V1=\/§a<\/g 1), ve = V3a <\g§,—1>; (3)

V(r) — % }eikobl-r _|_ eikon-I‘ + eik0b3-1‘|2

272 2

4
V/3ko
tance of two nearest minima. The unit cell €2 is the par-

allelogram with v and vy as its two sides(cf. Fig. 1).

The band structure of this honeycomb lattice can be
obtained from the linear lattice equation; i.e. equation
(1) omitting the nonlinear term

where a = is the lattice constant which is the dis-

i, + V3¢ —V(r)p =0. (4)

The Bloch modes follow from ¢ = e~y (r); substituting
this into the equation (4) one finds the eigen problem

pu 4 V2 — V(r)u = 0. (5)

It is well-known that the Bloch mode has the form
u(r;k) = e*TU(r;k) where U(r;k) has the same pe-
riodicity as the potential V(r); k = (kg, k) is the wave
number and the dispersion surface p(k) has two periods

ar (1 V3 dr (1 V3
kl = 37 <7) ) k2 = 5 <7> . (6)
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k; and ks, are referred to as the reciprocal lattice vec-
tors which describe the Brillouin zone €. u(r; k) is also
periodic with respect to k.

The eigen problem (5) can be solved numerically;
this determines the dispersion relation (band structure).
Typical bands 1 and 2 are displayed in Fig. 1(top right).
It is seen that the first and second bands touch each
other at certain isolated points and these so-called dia-
bolical points also display a honeycomb structure in k
plane. From Bloch theorem it follows that these diaboli-
cal points are actually the reciprocal lattice correspond-
ing to the original potential lattice.

There are two minima in a cell for the honeycomb lat-
tice which we use A and B to denote. All A sits or B
sites differ spatially with the multiples of vy and vo. All
A sites and B sits form two different triangular lattices:

A sublattice and B sublattice. In the reciprocal lattice,
there are also two diabolical points in the first Brillouin
zone which we call K and K’. They are depicted in Fig.
1 (bottom right). All dots are equivalent to K while
all circles are equivalent to K’. For the potential (2),
K = (0,2 and K’ = (0, J%-).

We begin by studying the wave propagation in the
honeycomb lattice numerically in equation (1). In order
to understand the essential aspects of conical diffraction
which has been observed to be a linear phenomenon, we
first study the linear regime, i.e. 0 = 0. Later we will dis-
cuss results for the nonlinear regime, 0 = 1. In our sim-
ulations, Vo = 100, a = 5. We simulate the propagation
of a wave envelope of Bloch modes near the diabolical
point K. One can obtain the Bloch modes numerically
and multiply the modes by a wide Gaussian envelope and
use this wave packet as the initial beam. Alternatively,
one can use one or more plane waves to excite the Bloch
modes which is also experimentally accessible (see [7, 9]).
In order to compare with this previous work, here we only
display the results with the second method. The simu-
lations with both methods are consistent. We use two
initial input beams. The first one is a Gaussian envelope
multiplied by the sum of two plane waves for which the
k vectors are two opposite diabolical points K and K'.
The evolution is displayed in Fig. 2 (a)-(c). It is seen
that an initial bell shape structure transforms into a ring
structure after some distance. The ring structures con-
tains two bright rings. The outer one is higher than the
inner one. Between two bright rings is a dark ring. This
dark ring is called Poggendorfl’s dark ring [3]. The sec-
ond initial beam is a Gaussian envelope multiplied by one
plane wave of which the k vector is the diabolical point
K. The results are displayed in Fig. 2 (d)-(f). The pat-
terns are similar—a spot becomes two bright rings. How-
ever, the rings in the second simulation are not complete
rings; they have notches at the bottom. The ring struc-
tures with notches are termed “half-turn of polarization
around the ring” and which was also predicted by Hamil-
ton and observed by Lloyd [3]. In both cases, the rings
expand radially, but the width of the ring remains the
same under propagation with decreasing intensity. As a
result, one can see a cone in the lattice. This is exactly
the so-called conical diffraction.

Next, we derive the governing equation for the prop-
agation of the Bloch-mode envelopes. The Bloch mode
u(r; k) = U (r; k). is periodic with respect to k, so it
can be expanded as a Fourier series

u(rsk) = 3wy p(x)e” MRV (7)

where w,, »(r) = IT%’\ Joy ulr; kK)emimkvizinkva gk s so-
called Wannier function. Here €’ is the Brillouin Zone,
i.e., the unit cell in k plane. From the definition, one has
that wy, »(r) = wo,0(r — Ry n) where R, ,, = mvy+nvy
denotes the position of the cell with indices (m,n). Some-
times the subscripts are omitted the Wannier function are



FIG. 2: The propagation of Bloch modes associated with a
diabolical point; (a)-(c) two plane waves; (d)-(f) one plane
wave: each is multiplied by a Gaussian envelope.

referred to as w(r — R,,,,) which for large Vj is localized
and centered around R,, , for special values of k.

Since p is also periodic in k plane, one can also repre-
sent it as a Fourier series,

ﬂ(k) _ Z/ffm,ne_imk.VI_ink.v2~ (8)

m,n

Due to the properties of Wannier functions, any solu-
tion of equation (1) has the form

P(r,z) = Z Crn,a(2)Wwe(r — Rmm)e_ik'Rm*". (9)

m,n,a

Here R, ,, stands for the position of unit cell with indices
(m,n) and « is the index of different bands. In this paper,
we only deal with the cases under which the components
of higher bands are small, so only the first band expansion
will be used. Thus, we discard the summation over a.

The above discussion is valid for any 2-D periodic lat-
tice. However, the lattices we are dealing with in this
paper are honeycomb lattices which have certain unique
features. A key feature of a honeycomb lattice is that
it contains two minima (sites A and B, dot and circle
in Fig. 1 respectively) in the unit cell. In tight binding
approximations, the honeycomb lattice can be broken up
into two triangular sublattices: A and B lattices. In this
case near a diabolical point, due to the degeneracy of the
honeycomb lattice, the expansion (9) can be written in
the form

w(r’ Z) = Zam,7n(z)'d}(r — Am7n)67ik"4m,n
+ Z bm,n(z)d)(r — Bm’n)e_ik'Bm,n. (10)

Here A, », and B, , are the site positions of the sublat-
tices and w(r) is the Wannier function associated with
either of the triangular sublattices; it is localized and
centered around the origin. The difference of two sub-
lattices is just a spatial shift a(1,0). The Wannier func-
tions of two sublattices, determined by the local proper-
ties around the sites of the potential, are the same. Here
Apn = Ao o+mvi+nve, By, = Boo+mvy+nvy. We

FIG. 3: The construction of the A and B lattices.

define three useful vectors, dy = A, ,— B = a(—1,0),

d2 = Am,n - Bm,nfl = a(%v_g) and dd = Am,n -
B—in = a(%, @) The vectors and their relations are

shown in Fig. 3.
Substituting equations (9) and (8) into the lattice
equation (1), we get

dam n dbm
Z( i (tizj Sa(m,n) +i dz’ Sp(m,n)

m,n

’ ’
- § Mm’,n’am—m’,n—n’SA(m —m,n—n )

m’,n’/

- Z Hm/ n’ bm—m’,n—n’ Sp (m - m/, n— ’Il/))

m’,n’/

+ (Z AmnSa(m,n) + by nSp(m,n))?

X (Z A nSa(m,n) + by, Sp(m,n))*

= 0, (11)

for convenience, we introduce the notation
—ikAmn and Sp(m,n) = d(r—

where,
Sa(m,n) =w(r—An e
Bmyn)eiik'Bm’".

We can reduce equation (11) to an explicit discrete
equation. We assume |ug,| > |fm,n|,m # 0 or n # 0.
This assumption is valid when the intensity of the poten-
tial is large, (i.e. Vy >> 1); i.e. the tight binding approx-
imation. The tight binding approximation also relates
Bloch functions to highly localized “Wannier functions”
(cf. [10] for the tight binding approximation associated
with the one-dimensional NLS lattice equation). Then
we can neglect long-range interaction terms in the linear
part of equation (11) and only consider nearest neigh-
bors. In this context, multiply equation (11) by a spe-
cific §% (m, n)(we drop the bar below) and integrate over
whole r plane and introduce e defined as

B Jw*(r = A n)@(r — By, )dr

= 12
‘ T — Ay ) Pdr 12)
Notice that w(r Apn) s localized around
Apn, so € is small and, due to the proper-

ties of Wannier functions, is also independent
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FIG. 4: Simulations of the Dirac equations (19-20) with o =
0. The initial conditions are that a is a Gaussian and b is
zero. (a)-(c) intensities of the a component at time 0, 5.4 and
10.8; (d)-(f) intensity of the b component at time 0, 5.4 and
10.8.

[ w*(r_Am,n)w(r_Banl,n)dr

of (m,n).  Then T T (= A ) 2dr

J @ (r—Ap )W (r—Bpm,n_1)dr
J (= Ap n)[2dr
both equal to e. We also assume pg0e = O(1), which
leads to a maximally balanced equation.
Keeping the dominant terms, we get

and

also small and are

are

Ay n

? — H0,00m,n + g0|am,n
dz

X (bmfl,neik'c13 + bm,nfleik'd2 + bm,neik.dl) = 0.

2am,n — €[00 (13)

where d; are defined below equation (10) and g
j [ B (r— A, )| dr
J 1(r—Am, n)|?dr
ilarly, we can get

which is also independent of (m,n); sim-

b
jmen
dz
—ik-d —ik-d —ik-d
X(amt1ne” "R+ amnr1e” 2 Fapmpe M) = 0.

- /J/O,Obm,n + go’|bm,n‘2bm,n + 6,MO,O (14)

Here we are studying the propagation of light beam
with wave number k which is in the vicinity of diabolical
points in the honeycomb lattice. The k in above analysis
is one of the diabolical points. We choose k = K =
(0, 22).

Then we get the discrete equations

. dam,n

1 dz — 140,00m,n T gg|am,n Qam,n — €L0,0 (15)
1 V3, 1 V3

X(bm—l,n(*i + 72) + bm,n—l(*i - 71) + bm,n) - 0

and

 dbp

ZTZJ - IU/O,Obm,n + gg|bm,n|2bm,n — €10,0 (16
1 V3 1 V3.

X(a/m+17n(—§ — 72) + am7n+1(—§ + 7@) + amm) =0.

The system of equations (15) and (16) is the discrete
Dirac system. In this paper we focus on the continu-
ous problem. Taking the continuum limit of the discrete
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FIG. 5: Simulations of Dirac equations (19-20) with ¢ = 0.
The initial conditions here are that a and b are the same
Gaussian. (a)-(c) depict intensities of the a component at
time 0, 5.4 and 10.8; and (d)-(f) the b component at time 0,
5.4 and 10.8.

Dirac system, after some straightforward calculations, we
obtain the governing equation

.0a
iz

3 ﬁe,uoﬁo(@wb —10yb) + ga\a|2a = 0; (17)
2z

— Ho,00 — 5

similarly, the b equation has the form

b 3
Z@ — po,0b + gwo,o(&ca +i0ya) + go|b|*b = 0. (18)

Notice that poea and pgob can be absorbed into the
first terms by defining new variables a = ae™'#°.°% and

b = be~#0.0%(we drop the tildes below). Letting D =

V3

—5€pip,0 we finally get the continuous nonlinear Dirac

system
.Oa 5
s + D(0-b) + golal“a = 0; (19)
i% — D(01a) + gol|b|*b = 0. (20)

where 04 = 0,%10,.

Thus the evolution of envelopes of Bloch modes asso-
ciated with the lattice NLS equation near a diabolical
point are governed, in general, by a nonlinear Dirac sys-
tem. If ¢ = 0, one gets linear Dirac system; but if o # 0,
we have a nonlinear Dirac system. Let us consider the
linear system first. The dispersion relation for the linear

system is defined by the equation
a\ (0
b)) \o

w? = D*(k3 + k).

—w D(iky + ky)
D(—iky + ky) —w
so the dispersion relation is

(22)

This is a cone and this cone is exactly the dispersion re-
lation of the honeycomb lattice near the diabolical point
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FIG. 6: The propagation of light beams in a saturable-type
lattice —see eq. (25); (a)-(c) two plane waves; (d)-(f) one plane
wave, each multiplied by a Gaussian envelope

The envelopes of the Bloch modes near diabolical point
K disperse conically in the honeycomb lattices. This phe-
nomenon can be described by the Dirac system (19)-(20).
We know that there are two sets of opposite diabolical
points which are equivalent to K and K’. The above
derivation is for K = (0, %) If we choose the other

diabolical point K’ = (0, %), the analysis is exactly
the same as well as the dispersion relation. However, the
corresponding system becomes

da

za + D(04b) + golal®a = 0; (23)
z% — D(0_a) + go|b]*b = 0. (24)

The only difference is just a variable change, y — —y.

The two initial conditions in our direct lattice equation
simulations are respectively: (1) both the a and b com-
ponents are Gaussian; (2) the a component is a Gaussian
while b is zero. In Fig. 2, we simulated the linear lattice
NLS equations; i.e. ¢ = 0. So the corresponding Dirac
system is linear. We simulate the linear Dirac system
with these two sets of initial conditions. The results are
displayed in Fig. 4 and Fig. 5. In Fig. 4, a is a unit Gaus-
sian and b is zero initially. The intensities of both a and
b are two perfect rings and the width of the rings doesn’t
change. This is consistent with the conical diffraction
phenomenon which we observed in Fig. 2 (top row) and
Preleg et. al observed in their experiments. On the other
hand in Fig. 5, both a and b initially are unit Gaussians.
The intensities of a and b have different ring structures
from before in Fig. 4. Now the rings have notches at
the bottom which correspond to the “half turn polariza-
tion” which we observed in direct lattice NLS equation
simulations (see Fig. 2(bottom row)).

In order to compare our analysis with previous studies
[9], we also simulated the saturable lattice equation:

Ey

. 2 o
We+ VY + 1+V(r)+a\w\2¢_0'

(25)

where V(r) has the form in (2). In this case, we choose
o =20,Vy, =0and Ey = 1000. Launching two different
initial beams, we get two evolution patterns which are
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FIG. 7: Simulations of the nonlinear lattice equation (a) and
the nonlinear Dirac system (b). The comparison of the phases
in the simulations of both linear (¢) and nonlinear (d) Dirac
systems.

displayed in Fig. 6. The evolution patterns are similar
to the patterns in Fig. 2 except there is a central spot
with saturable potential. Peleg et al. claimed that the
central spot comes from higher band components which
does not disperse conically [9]. The above analysis can
be applied to the equation (25) and (apart from coef-
ficient values) a Dirac system will be obtained. Hence
one expects and finds that the main features in the evo-
lution of the envelopes in both a linear potential lattice
and the saturable potential lattice are similar since they
are governed by the Dirac system. Details will be further
investigated in the future.

From the simulations and analysis, we obtained coni-
cal diffraction associated with the linear lattice. However
we also note that the essentials of conical diffraction also
exists in the presence of the lattice nonlinearity. We sim-
ulate the original lattice equation (1) with o = 1 and find
that the evolution of the intensities are almost the same
as the linear case where 0 = 0. A typical pattern is dis-
played in Fig. 7(a) which is corresponding to Fig. 2(c).
We also simulate the nonlinear Dirac system we derived
above, and the evolution of the intensities are almost the
same as the linear case too. A typical pattern is displayed
in Fig. 7(b)(nonlinear) which can be compared with Fig.
4(c) (linear). So conical diffraction does not only exist
in the linear regime; but it is a nonlinear phenomena as
well. The nonlinear Dirac system properly describes this
phenomena. While the evolution of the intensities for
both linear and nonlinear Dirac systems are essentially
unchanged, the phases in linear and nonlinear systems
are different (see Fig. 7(c)-(d)). A detailed analysis is
outside the scope of this paper.

In summary, conical diffraction in honeycomb lattices
was analyzed. In the tight binding limit, a discrete and



continuous Dirac system of evolution equations for the
envelopes of two sublattice Bloch modes near diabolical
points was derived. This Dirac system yields the same
evolution patterns as in lattice NLS equations. Thus the
tight binding limit contains the underlying mechanism
of conical diffraction in honeycomb lattices. It is also
found that conical diffraction survives in the presence of
nonlinearity.
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