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Perturbations of dark solitons
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A direct perturbation method for approximating dark soliton solutions of the nonlinear
Schrödinger (NLS) equation under the influence of perturbations is presented. The
problem is broken into an inner region, where the core of the soliton resides, and an
outer region, which evolves independently of the soliton. It is shown that a shelf develops
around the soliton that propagates with speed determined by the background intensity.
Integral relations obtained from the conservation laws of the NLS equation are used to
determine the properties of the shelf. The analysis is developed for both constant and
slowly evolving backgrounds. A number of problems are investigated, including linear
and nonlinear damping type perturbations.

Keywords: perturbation theory; solitons; optics

Perturbation theory as applied to solitons that decay at infinity, i.e. so-called
bright solitons, has been developed over many years (cf. Karpman & Maslov
1977; Kodama & Ablowitz 1981; Herman 1990). The analytical work employs
a diverse set of methods including perturbations of the inverse scattering
transform (IST), multi-scale perturbation analysis, perturbations of conserved
quantities, etc.; the analysis applies to a wide range of physical problems. In
optics, a central equation that describes the envelope of a quasi-monochromatic
wave train is the nonlinear Schrödinger (NLS) equation, which in normalized
form reads

iUz + D
2

Utt + n|U |2U = 0,

where D, n are constants. In this paper, we consider the NLS equation in a
typical nonlinear optics context, where D corresponds to the group-velocity
dispersion (GVD), n > 0 is related to the nonlinear index of refraction, z is the
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direction of propagation and t corresponds to the retarded time. In this form,
the sign of D determines whether the light focuses or defocuses. In the anomalous
GVD (or self-focusing nonlinearity) regime, the NLS equation exhibits so-called
‘bright’ solitons which are pulses that decay rapidly at infinity. In this case, the
solitons are formed because of a balance between dispersion and self-focusing
cubic nonlinearity.

On the other hand, in the normal GVD (or self-defocusing nonlinearity) regime,
decaying pulses broaden and bright solitons of the NLS equation do not exist.
Instead, solitons can be found as localized dips in intensity that decay off of a
continuous-wave (CW) background. These dark solitons, which are termed black
when the intensity of the dip goes to zero and grey otherwise, are also associated
with a rapid change in phase across the pulse. The experimental observations
of dark solitons in both fibre optics (Emplit et al. 1987) and planar waveguides
(Swartzlander et al. 1991) sparked significant interest in the asymptotic analysis
of their propagation dating back two decades.

The propagation of bright solitons under perturbation is described by the
adiabatic evolution of the soliton parameters; i.e. the soliton’s height, velocity,
position shift and phase shift. However, the non-vanishing boundary of dark
solitons introduces serious complications when applying the perturbative methods
developed for bright solitons. In early work, the particular case of linear loss was
studied both numerically (Zhao & Bourkoff 1989) and analytically (Giannini &
Joseph 1990). The analysis was specifically for black solitons and solved explicitly
for higher order correction terms. These results were re-derived (Lisak et al.
1991) by a more straightforward method. The method was extended to grey
solitons and general perturbations but only for two of the four main soliton
parameters; background height and soliton depth were determined. The evolution
of the background was shown to be independent of the soliton by Kivshar &
Yang (1994) and the asymptotic behaviour at infinity was used to separate
the propagation of the background magnitude from the rest of the soliton.
The amplitude/width of the soliton ‘core’ was determined via a perturbed
Hamiltonian. Of the methods proposed, many have employed perturbation theory
based on IST theory. In Konotop & Vekslerchik (1994), orthogonality conditions
are derived from a set of squared Jost functions (eigenfunctions of the linearized
NLS operator; Kaup 1976); from these conditions, the soliton parameters are,
in principle, determined. Over the years, various corrections/modifications have
been made to the details (Chen et al. 1998; Lashkin 2004; Ao & Yan 2005). The
implementation of this method, however, has fundamental flaws, which we discuss
at the end of §8.

In this paper, we address a central issue systemic through all these methods.
For dark solitons, finding the adiabatic evolution of the soliton parameters
(background height, soliton depth, position shift and phase shift) alone is
insufficient to fully characterize the evolution of a dark soliton. We find both
analytically and numerically the existence of a shelf that develops around a
dark soliton under perturbation. The tendency for shelves to generate around
dark solitons under external perturbation (Burtsev & Camassa 1997) was used
to explain discrepancies in the perturbed conservation laws. But, the analytical
calculation of the core soliton parameters was not obtained. Subsequently, shelf
contribution has been ignored. However, the shelf is critical in developing the
Proc. R. Soc. A

http://rspa.royalsocietypublishing.org/


Perturbations of dark solitons 3

 on July 5, 2012rspa.royalsocietypublishing.orgDownloaded from 
perturbation theory and has a non-trivial contribution to the integrals employed
to find expressions for the soliton parameters. In this paper, we use perturbed
conservation laws since they can be easily derived directly from the NLS equation
and do not require the associated subtleties inherent in the IST method and
extend to non-integrable problems. To carry out the procedure, we employ
suitable asymptotic information about the higher order perturbation terms
(beyond the soliton); other than for the ‘soliton centre’, we do not need the exact
higher order solution to solve the leading-order problem for the key parameters.
In order to determine the soliton centre, we find and employ the first-order
perturbation solution. We note that shelves in soliton perturbation theory have
been found earlier in a different, but as it turns out much easier, class of problems.
They were needed to effectively understand the KdV equation under perturbation
(cf. Knickerbocker & Newell 1980; Ablowitz & Segur 1981). In the KdV equation,
there is a small shelf produced in the wake of the soliton. The height/speed
of the soliton, shelf and the additional soliton parameter that determines the
centre of the soliton are all determined by perturbation theory (Kodama &
Ablowitz 1981).

In bright soliton perturbation theory, Fredholm alternatives are used to derive
equations for the slowly varying soliton parameters. These conditions are identical
to those derived from the perturbed conservation laws for energy and momentum
(Ablowitz et al. 2009). A similar connection can be drawn for dark solitons. Even
here, however, the existence of non-decaying eigenfunctions means that normal
Fredholm alternative methods are insufficient to generate the related equations
and a generalized method must be employed (Nixon 2011).

The outline of this paper is as follows. In §1, we pose the problem and
illustrate how the background evolves under perturbation independent of any
localized solitary wave disturbances. Sections 2–5 set up the basic analysis and
a prototypical problem is discussed that helps describe the ideas. The method
of multiple scales is employed to find the first-order approximation for a black
soliton under the action of a dissipative perturbation that decays to zero well away
from the soliton core. The concept of a moving boundary layer is used to bridge
the differences between the inner soliton solution and the outer background.
This discrepancy between the approximate soliton solution and the background
manifests itself as a shelf developing on either side of the soliton. Perturbed
conservation laws are used to find the growth of the shelf in both magnitude
and phase. The analytical results are shown to be in agreement with numerical
simulations of the perturbed NLS equation. In §§6–8, the method is extended
to grey solitons under general perturbations. Asymptotic information about the
shelf is obtained from the linear first-order perturbation equation; to determine
the asymptotic states and ‘centre of phase’, the complete solution of the linear
problem is not required. However, to find the soliton centre we find the first-order
correction term. In §§9–11, the perturbation method is applied to some physically
relevant perturbations: dissipation and two photon absorption (TPA). We find
that the spatial frequency of the soliton differs from that of the background on
which it resides. All of the adiabatically varying core soliton parameters and
the shelf have not been obtained in the many previous studies of perturbed
dark solitons.
Proc. R. Soc. A
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1. The boundary at infinity

Let us consider the dimensionless NLS equation with normal dispersion: D = −1,
n = 1 (we can always rescale NLS to get these normalized values) and with an
additional small forcing perturbation

iUz − 1
2Utt + |U |2U = eF [U ], (1.1)

where |e| � 1. Further, we will assume a non-vanishing boundary value at infinity;
i.e. |U | �→ 0 as t → ±∞. The effect the perturbation has on the behaviour of the
solution at infinity is independent of any local phenomena such as pulses that do
not decay at infinity; i.e. dark solitons. In the case of a CW background, which
is relevant to perturbation problems with dark solitons as well as in applications
to lasers, we have Utt → 0 as t → ±∞, and the evolution of the background at
either end U → U ±(z) is given by the equation

i
d
dz

U ± + |U ±|2U ± = eF [U ±]. (1.2)

We write U ±(z) = u±(z)eif±(z), where u±(z) > 0 and f±(z) are both real
functions of z . Then, the imaginary/real parts of the above equations are

d
dz

u± = e Im[F [u±eif±]e−if±] (1.3a)

and

d
dz

f± = (u±)2 − e Re[F [u±eif±]e−if±]
u± (1.3b)

The above equations completely describe the adiabatic evolution of the
background under the influence of the perturbation F [U ]. Although this is true
for all choices of perturbation, we will further restrict ourselves to perturbations
that maintain the phase symmetry of equation (1.1); i.e. F [U (z , t)eiq] =
F [U (z , t)]eiq. As we show next, this is a sufficient condition to keep the magnitude
of the background equal on either side and a property of most commonly
considered perturbations. We assume that at z = 0, u+(0) = u−(0), then, since
u±(z) satisfy the same equation, the evolution is the same for all z . Hence,
u+(z) = u−(z) ≡ u∞(z). While this restriction is convenient, the essentials of
the method presented here apply in general. The equations for the background
evolution (1.3) can now be further reduced by considering the phase difference
Df∞(z) = f+(z) − f−(z), which is the parameter related to the depth of a dark
soliton (see below); here f±(z) represents the phase as t → ±∞, respectively,

d
dz

u∞ = e Im[F [u∞]] and
d
dz

Df∞ = 0. (1.4)

Thus, while the magnitude of the background evolves adiabatically, the phase
difference remains unaffected by the perturbation.
Proc. R. Soc. A
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Let us now focus on the evolution of a dark soliton under perturbation. To
simplify our calculations, we take out the fast evolution of the background phase
U = ue

∫z
0 u∞(s)2 ds, so equation (1.1) becomes

iuz − 1
2utt + (|u|2 − u2

∞)u = eF [u]. (1.5)

The dark soliton solution to the unperturbed equation is given by

us(t, z) = (A + iB tanh[B(t − Az − t0)])eis0 , (1.6)

where the core parameters of the soliton, A, B, t0, s0, are all real, the magnitude of
the background is (A2 + B2)1/2 = u∞ and the phase difference across the soliton is
2 tan−1(B/A), A �= 0. When A = 0, equation (1.6) describes a black soliton, which
has a phase difference of p.

2. The first-order correction

We write the solution in terms of the amplitude and phase: u = qeif, where q and
f are both real functions of z and t, so equation (1.5) becomes

iqz − fzq − 1
2(qtt + i2ftqt + q(iftt − f2

t )) + (|q|2 − u2
∞)q = eF [u].

We employ the method of multiple scales by introducing a slow scale variable
Z = ez with the parameters A, B, t0 and s0 being functions of Z and expand q
and f as series in e: q(Z , z , t) = q0 + eq1 + O(e2) and f(Z , z , t) = f0 + ef1 + O(e2);
we have at O(1)

q0z = 1
2(2f0tq0t + q0f0tt) (2.1a)

and

f0zq0 = − 1
2(q0tt − f2

0tq0) + (|q0|2 − u2
∞)q0 (2.1b)

with the general dark soliton solution

q0 = (A(Z )2 + B(Z )2 tanh2(x))1/2 (2.2a)

and

f0 = tan−1
[
B(Z )
A(Z )

tanh(x)
]

+ s0(Z ), (2.2b)

where x = B(t − ∫z
0 A(es) ds − t0(Z )). For a black soliton, the form of

solution (2.2) is taken to be

q0(Z , z , t) = u∞ tanh[u∞(t − t0(Z ))] (2.3a)

and

f0(Z , z , t) = s0(Z ), (2.3b)
Proc. R. Soc. A
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where we note that in this representation q0 is allowed to be negative. At O(e),
we have

q1z = 1
2 [2(f0tq1t + q0tf1t) + q0f1tt + q1f0tt] + Im[F ] − q0Z (2.4a)

and

f1zq0 = −q1f0z − 1
2 [q1tt − (2f0tf1t)q0 − f2

0tq1] + 3q2
0q1 − u2

∞q1 + Re[F ] − f0Zq0.
(2.4b)

We begin with a somewhat simpler problem than others we deal with later;
i.e. consider the linear dissipative filter perturbation

F [u] = igutt , g > 0 (2.5)

and for concreteness, at leading order we assume a black pulse, equation (2.3),
which satisfies the boundary conditions, equation (1.4); i.e. u∞(Z ) = const. This
leaves us with slow evolution terms

q0Z = −t0Zq0t and f0Z = s0Z . (2.6)

If we look for a stationary solution, q1z = f1z = 0, and note that f0t = f0tt = 0,
then equations (2.4) reduce to

0 = 1
2 [2(q0tf1t) + q0f1tt] + Im[F ] + t0Zq0t (2.7a)

and
0 = − 1

2q1tt + 3q2
0q1 − u2

∞q1 + Re[F ] − s0Zq0, (2.7b)

where Im[F ] = gq0tt and Re[F ] = 0. Thus, the equations decouple into two linear
second-order differential equations and we find exact solutions

q1 = s0Z

4u∞
[sinh(2u∞(t − t0)) + 2u∞(t − t0)] sech2(u∞(t − t0)) (2.8a)

and
f1 = 4

3g ln[cosh(u∞(t − t0))] − t0Z (t − t0), (2.8b)

where we have chosen the free parameters to remove exponential growth and
maintain the antisymmetric property of q and f, respectively. Looking at the
asymptotic behaviour as t → ±∞, we have

f±
1t = ±4

3
gu∞ − t0Z and q±

1 = ± s0Z

2u∞
(2.9)

where the superscript ± indicates the value of a function as t → ±∞, respectively.

3. Boundary layer

Notice that q1 �→ 0 and f1 �→ 0 as t → ±∞. As a result, the solution to order
eu ≈ (q0 + eq1)ei(f0+ef1) does not match the boundary conditions at infinity. Thus,
our problem is now broken into two regions: the region that matches imposed
non-decaying boundary condition behaviour at infinity that is unaffected by the
soliton, and the region in which the O(e) correction term is valid and the solution
is quasi-stationary. We introduce a boundary layer in which there is a transition
from the non-zero value in the perturbation term to the boundary conditions
Proc. R. Soc. A
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at infinity (see also Knickerbocker & Newell 1980; Kodama & Ablowitz 1981).
Note in this section we will consider the more general case when u∞ is a function
of Z = ez . We find the behaviour of this boundary layer, where the regions are
matched. For this, we return to equation (1.5) and seek a solution perturbed
around the solution at infinity, say u ≈ (u∞ + ew)ei(f±+eq), where w and q are real
functions of z and t; the equation is automatically satisfied at O(1) and we have
at O(e)

−qzu∞ + iwz − 1
2
[iu∞qtt + wtt] + 2u2

∞w = F [u∞ + ew] −
(

i
du∞
dZ

− u∞
df±

dZ

)
.

(3.1)
After substituting equations (1.3) and (1.4) and noting F [u∞ + ew] − F [u∞] ≈
eF ′[u∞]w, it follows that the right-hand side is actually a higher order term
and may be dropped. As a corollary, to leading order, the boundary layer is
independent of perturbation. We now break equation (3.1) into real and imaginary
parts

qzu∞ = 2u2
∞w − 1

2wtt and wz = 1
2u∞qtt . (3.2)

Employing the compatibility conditions, wzzt = wtzz and qzzt = qtzz , the above
equations become

wzz = u2
∞wtt − 1

4wtttt and qzz = u2
∞qtt − 1

4qtttt , (3.3)

which is the same equation for both functions, though we will need a different
solution for each. This is because of the differing boundary conditions to correctly
match the inner region to the outer region. On the left side of the shelf, we match
the non-zero quasi-stationary shelf to the equilibrium state at infinity (which is
on the left of the soliton); the boundary conditions are

w(−∞) = 0, w(∞) = q−
1 , q(−∞) = 0 and qt(∞) = f−

1t (3.4)

On the right side of the shelf (on the right of the inner soliton), the boundary
conditions are

w(−∞) = q+
1 , w(∞) = 0, qt(−∞) = f+

1t and q(∞) = 0 (3.5)

If we let w = ei(kt+(1/e)
∫Z

0 u(s,k)ds), then the ‘dispersion’ relation for equations (3.3)
is found to be

u2 = u2
∞(Z )k2 + 1

4k
4. (3.6)

For long waves (k � 1), we approximately have u(Z , k) ≈ ±u∞(Z )k or w =
eik(t±(1/e)

∫Z
0 u∞(Z )). Thus, we see that long-wave solutions (i.e. |k| � 1) move with

instantaneous velocity V (z) = ±u∞(z).
Proc. R. Soc. A
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With this in mind, we look for solutions to equations (3.3) in a moving frame
of reference: x = t − ∫z

0 V dz , z = z and V = ±u∞.

wzz = 2Vwzx − 1
4wxxxx qzz = 2V qzx − 1

4qxxxx . (3.7)

We assume that derivatives with respect to x are small i.e. long waves. Seeking
an optimal balance in equation (3.7), we take

vzz � vzx ∼ vxxxx � 1,

leaving us with

0 = 2Vwzx − 1
4wxxxx and 0 = 2V qzx − 1

4qxxxx (3.8)

There are now two similarity solutions that we find to satisfy the boundary
conditions (3.4) and (3.5) derived from matching the two regions. This is done
by using the change of variable x = x/z1/3 to reduce equations (3.7) to Airy-
type equations (Abramowitz & Stegun 1965). Solutions are expressed in terms of
integrals of the Airy function.

w(x) = c1

∫ ax/z1/3

−∞
Ai(s)ds (3.9)

where a = −2(V /3)1/3. Note that the sign of a is dependent on the sign of the
velocity V so that the form for w is valid at both boundaries. For the left boundary
c1 = q−

1 and for the right boundary c1 = q+
1 .

q(z, x) = c2

∫ x

±∞

∫ ax̃/z1/3

−∞
Ai(s)ds dx̃ , (3.10)

where the lower bound on the first integral is −∞ for the left boundary and +∞
for the right boundary. For the left boundary c2 = f−

1t and for the right boundary
c2 = f+

1t . An important point is that in the case of a black soliton, there are two
boundary layers moving away from the soliton solution with speed u∞ generating
a shelf. The shelf must be carefully taken into consideration when dealing with
the integrals employed in soliton perturbation theory, be it in the conservation
laws that we will be employing or in integral secularity conditions.

4. Perturbed conservation laws

We still need to solve for the slowly evolving parameters s0(Z ) and t0(Z ) for the
black soliton. This can be done by deriving equations for the growth of the shelf
from the perturbed conservation laws associated with the perturbed NLS (1.5)
equation from only the leading-order solution and asymptotic information about
the perturbed solution. The shelf is associated with the asymptotic parameters
q±
1 and f±

1t , which are in turn expressed in terms of s0Z and t0Z . We use the
Hamiltonian H , the energy E , the momentum I and the centre of energy R
defined below. For grey solitons, t0 proves to be more difficult to obtain than s0.
Proc. R. Soc. A
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To find t0 we employ u1 in the expansion u = u0 + eu1 + · · · . To find s0, only
asymptotic information is needed.

H =
∫∞

−∞

[
1
2

∣∣∣∣vu
vt

∣∣∣∣
2

+ 1
2
(u2

∞ − |u|2)2

]
dt, (4.1a)

E =
∫∞

−∞
[u2

∞ − |u|2]dt, (4.1b)

I =
∫∞

−∞
Im[uu∗

t ] dt (4.1c)

and R =
∫∞

−∞
t(u2

∞ − |u|2) dt, (4.1d)

where u∗ denotes the complex conjugate.
Note that since the standard total energy (ETotal =

∫ |u|2 dt) would be infinite,
we define the energy of a dark pulse to be the difference of the total energy and the
energy of a CW of corresponding magnitude. For the unperturbed NLS equation,
the first three integrals are conserved quantities while the last can be written in
terms of the momentum, i.e. dR/dz = −I . Evolution equations for these integrals
may be easily obtained from equations (1.1) and (1.4)

dH
dz

= e

(
E

d
dZ

u2
∞ + 2Re

∫∞

−∞
F [u]u∗

z dt
)

, (4.2a)

dE
dz

= 2e Im
∫∞

−∞
(F [u∞]u∞ − F [u]u∗)dt, (4.2b)

dI
dz

= 2e Re
∫∞

−∞
F [u]u∗

t dt (4.2c)

and
dR
dz

= −I + 2e Im
∫∞

−∞
t(F [u∞]u∞ − F [u]u∗)dt. (4.2d)

5. The black soliton

We begin with the perturbed conservation of energy

d
dz

∫∞

−∞
[u2

∞ − |u|2] dt = 2e Im
∫∞

−∞
(F [u∞]u∞ − F [u]u∗)dt. (5.1)

Substituting in u = qeif, F [u] = igutt , T = t − t0 expanding q = q0 + eq1 + · · · and
taking the terms up to O(e), we have

d
dz

∫∞

−∞
[q2

0 − u2
∞ + e2q0q1]dT = 2e

∫∞

−∞
gq0TTq0 dT . (5.2a)

At O(1) equation (5.2a) is satisfied: (d/dz)
∫[q2

0 − u2∞] dT = 0; At O(e), we have

d
dz

∫u∞z

−u∞z
q0q1 dT = −g

∫∞

−∞
q2
0T dT . (5.2b)
Proc. R. Soc. A
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This is an equation for the change in energy caused by the propagation of the shelf.
Notice that on the left-hand side of equation (5.2b), we are only integrating over
T ∈ [−u∞z , u∞z], the inner region around the soliton defined by the boundary
layers found in the last section. Since q0 and q1 are only functions of T and Z ,
we can apply the fundamental theorem of calculus to arrive at

u∞[q1(u∞z)q0(u∞z) + q1(−u∞z)q0(−u∞z)] = −gu3
∞

4
3
. (5.2c)

And, for large z (although in practice, u∞z only needs to be modestly larger than
the full-width half-maximum), we take q0 → ±u∞ and q1 → q±

1 , leaving us with

q+
1 − q−

1 = −4
3
u∞g. (5.2d)

By substituting in the asymptotic approximation (2.9) found earlier for q±
1 , we

arrive at an expression for s0

s0Z = −g
4
3
u2

∞. (5.3)

Next, we consider the modified conservation of momentum

d
dz

Im
∫∞

−∞
uu∗

t dt = 2e Re
∫∞

−∞
F [u]u∗

t dt. (5.4)

Again, we let u = qeif, F [u] = igutt , T = t − t0 and use the perturbation expansion
for u up to O(e) so that equation (5.4) becomes

− d
dz

∫∞

−∞
[f0Tq2

0 + e(2f0Tq0q1 + f1tq2
0 )]dT = e2 Re

∫∞

−∞
igq0TTq0T dT , (5.5a)

which, using f0T = 0, reduces in the same way as the conservation of energy to

f+
1t + f−

1t = 0. (5.5b)

By substituting in the asymptotic approximations (2.9) found earlier for f±
1t , we

arrive at an expression for t0
t0Z = 0. (5.6)

Later, we will see that the above result agrees with the more general grey
soliton case.

This can now be compared with direct numerical simulations. The magnitude
and phase are depicted in figure 1a,b, respectively, for z = 30 and u∞ = 1. Here,
we see the inner region discussed earlier is t ∈ (−30, 30), where the asymptotic
solution agrees well with the numerical solution. The remainder of the domain
constitutes the outer region where the inner asymptotic solution matches with the
exterior rest state; this is discussed subsequently. The boundary layer shown in
figure 2b compares the solutions (3.9) and (3.10) to numerics and illustrates how
the inner and outer solutions are connected. The propagation of this boundary
layer can be seen in figure 2a where the contour plot illustrates the soliton down
the middle and the shelf extending out from it. The speed of the boundary layer
matches the speed predicted by the long-wave approximation in §3.
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Figure 1. (a) Numerical results plotted against the asymptotic approximation for the magnitude
|u| up to O(e). (b) Numerical results plotted against the asymptotic approximation for the phase f

up to O(e). Here u∞ = 1, z = 30 and eg = 0.05. (a,b) Solid line, numerics; dashed line, asymptotics.
(Online version in colour.)
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Figure 2. (a) The predicted location of the boundary layer tBL = ±u∞z displayed over a contour
plot of |u|. (b) Asymptotic approximation |u| ≈ u∞ + ew and f ≈ −(Df∞/2t) + eq for the boundary
layer compared with numerics at z = 30. (Here u∞ = 1 and eg = 0.05.) (a) Solid lines, numerics;
dashed line, asymptotics. (Online version in colour.)

6. The grey soliton

Now we consider the general case of a grey soliton with velocity A(Z ); we also
recall (A2 + B2)(Z ) = u2∞(Z ). Let u = qeif, where q > 0 and f are real functions
of z and t, and introduce the moving frame of reference T = t − ∫z

0 A(es)ds − t0
and z = z , so that with u = u(z, T , Z ), equation (1.5) becomes

iuz − iAuT − 1
2uTT + (|u|2 − u2

∞)u = eF [u]. (6.1)

Then using u = qeif, this is now broken into imaginary and real parts, respectively,

qz = AqT + 1
2(2fTqT + qfTT ) + e Im[F [q, f]] (6.2a)

and

fzq = AfTq − 1
2(qTT − f2

Tq) + (|q|2 − u2
∞)q − e Re[F [q, f]]. (6.2b)

We now write equation (6.2b) in terms of the slow evolution variable z = eZ
and series expansions q = q0 + eq1 + O(e2) and f = f0 + ef1 + O(e2). At O(1),
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the equations are satisfied by the soliton solution (2.2). We look for stationary
solutions at O(e)

0 = Aq1T + 1
2 [2(f0Tq1T + f1Tq0T ) + f1TTq0 + f0TTq1] + Im[F [u0]] − q0Z (6.3a)

and

0 = A(f0Tq1 + f1Tq0) − 1
2(q1TT − f2

0Tq1 − 2f0Tq0f1T ) + 3q2
0q1 − u2

∞q1

− Re[F [u0]] − f0Zq0, (6.3b)

where u0 = q0eif0 and

q0Z = 1
2
(AAZ + BBZ tanh2(x))q−1

0 + q0T

(
BZ

B
− t0Z

)
(6.4a)

and

f0Z = (ABZ − BAZ ) tanh(x)q−2
0 + f0T

(
BZ

B
− t0Z

)
+ s0Z . (6.4b)

Next we assume a shelf structure similar to the one found in our example
problem will develop; this is supported by numerical computations. Consider that
equation (6.3a) in the limit T → ±∞ using q0 → u∞ and u∞Z = ImF [u∞] yields

0 = Aq±
1T + u∞

2
f±

1TT . (6.5)

We assume q1 tends to a constant with respect to t; i.e. q1T → 0 as t → ±∞. As
a result f1TT → 0. Then, q1 and f1T both tend asymptotically to constants as
t → ±∞, which corresponds to a shelf developing around the soliton. Substituting
f0T into equation (6.3b), in the limit T → ±∞, we get

Af±
1T + 2u∞q±

1 = −Re[F [u∞]]
u∞

± (ABZ − BAZ )
u2∞

+ s0Z . (6.6)

We define Df0 = 2 tan−1(B/A) as the phase change across the core soliton. This
is consistent with the soliton parameters A and B being expressed in terms of
background magnitude, u∞, and phase change, Df0,

A = u∞ cos
(

Df0

2

)
and B = u∞ sin

(
Df0

2

)
. (6.7)

Using f±
Z = −Re[F [u∞]]/u∞ from §1 and substituting equation (6.7) into

equation (6.6) we find

Af±
1T + 2u∞q±

1 = f±
Z ± Df0Z

2
+ s0Z . (6.8)

7. Conservation laws for the grey soliton

Next we use the modified conservation equations (4.2d) to solve for the shelf
parameters q±

1 and f±
1t as well as the slow evolution variables A, s0Z . More work

is required in order to find t0. Note that if we find A, then B = (u2∞ − A2)1/2. The
edge of the shelf still propagates with velocity V (Z ) = u∞(Z ); however, the speed
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may now vary in z . In terms of the moving frame of reference, the boundaries of
the shelf are

SL(z) = −
∫ z

0
[u∞(es) + A(es)] ds and SR(z) =

∫ z

0
[u∞(es) − A(es)] ds, (7.1)

where SL and SR give the position in T of the left and right boundaries of the
shelf, respectively, at z. Note that A ≤ u∞ for all Z ; thus, the soliton cannot
overtake the shelf. In figure 3, we illustrate the general structure of a perturbed
dark soliton with the moving shelf. The inner region consists of the core soliton
and the shelf expanding around it, while the outer region consists of the infinite
boundary conditions characterized by equations (1.4). The boundaries between
these regions are delineated by dotted red lines at t = SL and t = SR.

We begin with the evolution equation for the Hamiltonian (4.2):

d
dz

∫∞

−∞

[
1
2
|ut |2 + 1

2
(u2

∞ − |u|2)2
]

dt

= e(u2
∞)Z

∫∞

−∞
[u2

∞ − |u|2] dt + 2e Re
∫∞

−∞
F [u]u∗

z dt. (7.2)

Substituting in u = (q0 + eq1)ei(f0+ef1) and changing variables to the moving frame
of reference, we have up to O(e)

d
dz

∫∞

−∞
[(q2

0T + f2
0Tq2

0 ) + (u2
∞ − q2

0 )
2] dT

= 2e(u2
∞)Z

∫∞

−∞
[u2

∞ − q2
0 ] dT − 4e Re

∫∞

−∞
F [u0]Au∗

0T dT , (7.3)

where both here and later on u0 = q0eif0 . The Hamiltonian is unique among the
evolution equations (4.2d) in that the contribution of the shelf appears only at
O(e2) or higher and that to O(e) may be ignored. We now put in the soliton
form (2.2) to get

2B2BZ = (u2
∞)ZB − A Re

∫∞

−∞
F [u0]u∗

0T dT . (7.4)
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Taking a derivative with respect to Z of the equation u2∞ = A2 + B2, we get
(u2∞)Z = 2AAZ + 2BBZ , which can be used to consolidate equation (7.4) down to

2BAZ = Re
∫∞

−∞
F [u0]u∗

0T dT . (7.5)

The evolution equations for energy (5.1) and momentum (5.4) both remain the
same after transforming to the moving frame of reference

d
dz

∫∞

−∞
[u2

∞ − |u|2]dT = 2e Im
∫∞

−∞
[F [u∞]u∞ − F [u]u∗] dT (7.6)

and
d
dz

Im
∫∞

−∞
uu∗

T dT = 2e Re
∫∞

−∞
F [u]u∗

T dT . (7.7)

The inner region over which q1 and f1 are relevant is T ∈ [SL(z), SR(z)], and
outside this region q1 = f1T = 0. At O(1), the equations are satisfied and at O(e)
we have

BZ − d
dz

∫SR(z)

SL(z)
q0q1 dT = Im

∫∞

−∞
[F [u∞]u∞ − F [u0]u∗

0 ] dT (7.8a)

and

−2(AB)Z − d
dz

∫SR(z)

SL(z)
[2f0Tq0q1 + f1Tq2

0 ] dT = 2 Re
∫∞

−∞
F [u0]u∗

0T dT . (7.8b)

Since the integrands on the left-hand side are not functions of z, we can apply
the fundamental theorem of calculus to arrive at

BZ − u∞[(u∞ − A)q+
1 + (u∞ + A)q−

1 ] = Im
∫∞

−∞
[F [u∞]u∞ − F [u0]u∗

0 ] dT (7.9a)

and

2(AB)Z + u2
∞[(u∞ − A)f+

1T + (u∞ + A)f−
1T ] = −2Re

∫∞

−∞
F [u0]u∗

0T dT . (7.9b)

We are left now with the evolution of the centre of energy

d
dz

∫∞

−∞
t(u2

∞ − |u|2) dt = −Im
∫∞

−∞
uu∗

t dt + 2e Im
∫∞

−∞
t(F [u∞]u∞ − F [u]u∗) dt,

(7.10)
which after transforming to the moving frame of reference is now

d
dz

∫∞

−∞

(
T +

∫ z

0
A + t0

)
(u2

∞ − |u|2) dt

= −Im
∫∞

−∞
uu∗

T dT + 2e Im
∫∞

−∞
(T +

∫ z

0
A + t0)(F [u∞]u∞ − F [u]u∗) dT .
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After rearranging some terms, we have

d
dz

∫∞

−∞
T (u2

∞ − |u|2) dT (7.11a)

+
(∫ z

0
A + t0

)[
d
dz

∫∞

−∞
[u2

∞ − |u|2] dT − e2 Im
∫∞

−∞
(F [u∞]u∞ − F [u]u∗) dT

]
(7.11b)

+ A
∫∞

−∞
[u2

∞ − |u|2] dT + Im
∫∞

−∞
uu∗

T dT (7.11c)

= −et0Z

∫∞

−∞
[u2

∞ − |u|2] dT + 2e Im
∫∞

−∞
T (F [u∞]u∞ − F [u]u∗) dT . (7.11d)

Equation (7.11) line (a) yields

d
dz

∫∞

−∞
T (u2

∞ − |u|2) dT = −2[SR(u∞ − A)q+
1 + SL(u∞ + A)q−

1 ]u∞. (7.12)

The terms on equation (7.11) line (b) reproduce the energy equation (7.6) and
cancel out. The terms on equation (7.11) line (c) are calculated up to O(e) using
the previous results by integrating the energy and momentum equation (7.9b)

E(Z ) = 2B − 2[SR(Z )q+
1 − SL(Z )q−

1 ]u∞ + eE1(Z ) + O(e2)

and I (Z ) = −2AB − u2
∞[SR(Z )f+

1t − SR(Z )f−
1t] + eI1(Z ) + O(e2).

Note that d/dz = ed/dZ and SR and SL are O(1/e) in terms of Z .
Putting everything together in terms of Z = ez yields

e2Bt0Z = 2e Im
∫∞

−∞
T (F [u∞]u∞ − F [u0]u∗

0 ) dT e + AE1(Z ) + eI1(Z )

+ [2u∞[SR(u∞ − A)q+
1 + SL(u∞ + A)q−

1 ] + 2u∞A[SRq+
1 − SLq−

1 ]
+ u2

∞[SRf+
1t − SLf−

1t]]. (7.13)

After some cancellations, this breaks into O(1) terms

2[SRq+
1 + SLq−

1 ] + [SRf+
1T − SLf−

1T ] = 0 (7.14)

and O(e) terms that include t0Z and higher order energy and momentum terms,
which have not been determined. The six equations, equations (6.8), (7.5),
(7.9a), (7.9b) and (7.14), can now be used to solve for the set of six parameters
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q±
1 , f±

1t(= f±
1T ), A and s0. To find t0Z , we need to employ more information—see

the next section.

d
dZ

u∞ = Im[F [u∞]], (7.15a)

2B
d

dZ
A = Re

∫∞

−∞
F [u0]u∗

0TdT , (7.15b)

u∞
d

dZ
s0 = BZ − Im

∫∞

−∞
(F [u∞]u∞ − F [u0]u∗

0 )dT + Re[F [u∞]], (7.15c)

q+
1 = 1

2
(s0Z + Df0Z )

(u∞ − A)
, (7.15d)

q−
1 = 1

2
(s0Z − Df0Z )

(u∞ + A)
, (7.15e)

f+
1T = −2q+

1 , (7.15f )

f−
1T = 2q−

1 (7.15g)

BZ = (u∞u∞Z − AAZ )
B

(7.15h)

and Df0Z = (2ABZ − 2BAZ )
u2∞

. (7.15i)

We have added equations (7.15h) and (7.15i) to the list since it is often easier
to use these formulations for BZ and Df0Z rather than working out B and Df0
explicitly and then taking derivatives.

By combining equations (7.5) and (7.9b), we arrive at

2(AB)Z + u2
∞[(u∞ − A)f+

1T + (u∞ + A)f−
1T ] = 4BAZ , (7.16)

which may be rewritten as

2ABZ − 2BAZ + u2
∞

d
dz

[f1(SR) − f1(SL)] = 0. (7.17)

If we define Df1 as

Df1 = f1(SR) − f1(SL), (7.18)

then ef1 is the phase change across the shelf. Substituting this definition along
with (7.15i) into equation (7.17), we arrive at

d
dZ

Df0 + e
d

dZ
Df1 = 0. (7.19)

Thus, the total phase change across the inner region remains constant, which is
consistent with our earlier result that Df∞ (the phase change from −∞ to ∞)
remains constant for all perturbations. As an example, figure 8 shows that the
entire phase change remains consistent with the given boundary condition.
Proc. R. Soc. A

http://rspa.royalsocietypublishing.org/


Perturbations of dark solitons 17

 on July 5, 2012rspa.royalsocietypublishing.orgDownloaded from 
8. t0Z and higher order terms

To find the final parameter t0, we employ the first-order correction term. We look
for a series solution to equation (1.1) of the form u = u0 + eu1 + O(e2), and at
O(e) we have

iu1z +
(

−1
2

v2
t + 2|u0|2 − u2

∞

)
u1 + (u2

0)u
∗
1 = F [u0] − iu0Z . (8.1)

After changing variables to the moving frame of reference T = t − ∫z

0 A(es) ds −
t0, z = z we have

iu1z +
(

−iAvT − 1
2

v2
T + 2|u0|2 − u2

∞

)
u1 + (u2

0)u
∗
1 = F [u0] − iu0Z . (8.2)

Here,

u0Z = AZ eis + BZ

B
(u0 − A eis) + u0T

(
−t0Z + BZ

B
T

)
+ is0Zu0. (8.3)

If we look for stationary solutions (v/vz = 0), this can be written as a system
of coupled second-order differential equations

LU1 = G[u0] (8.4a)

where

U1 =
(

Re[u1]
Im[u1]

)
and G[u0] =

(
Re[F [u0] − iu0Z ]
Im[F [u0] − iu0Z ]

)
(8.4b)

and

L =
⎡
⎢⎣−1

2
v2

T + (3A2 + B2 tanh(BT ) − u2∞) AvT + 2AB tanh(BT )

−AvT + 2AB tanh(BT ) −1
2

v2
T + (A2 + 3B2 tanh(BT ) − u2∞)

⎤
⎥⎦.

(8.4c)
In the limit A → 0, this system decouples into two second-order differential

equations that are not difficult to solve and give two strictly real solutions and
two strictly imaginary solutions. For each solution we found for A = 0, we assume
there exists a solution for A �= 0 that differs only in the perpendicular direction;
e.g. if UH = ( uR

0

)
satisfies equation (8.4c) with A = 0, then there exists uI such

that UH = ( uR
uI

)
satisfies equation (8.4c) with A �= 0; namely only the second

component changes and hence the system reduces to the first-order equation
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that is consistent with the remaining equations. Under this assumption, we find
a complete set of homogeneous solutions

U11 =
(

0
sech2(BT )

)
, U12 =

(
B tanhBT

−A

)
, (8.5a)

U13 =
⎛
⎝ B(BT tanh(BT ) − 1)

A
(

−BT + 3
2
BT sech2(BT ) + 3

2
tanh(BT )

)⎞
⎠ (8.5b)

and U14 =
⎛
⎝ − 4AB

A2 − B2
cosh2(BT )

3BT sech2(BT ) + 4 tanh(BT ) + tanh(BT ) cosh(2BT )

⎞
⎠ (8.5c)

and using variation of parameters, we can obtain a particular solution, U1p, for
the forcing G[u0].

After combining real and imaginary parts, the full solution to equation (8.2)
is given by

u1 = c1u11 + c2u12 + c3u13 + c4u14 + u1p, (8.6)

where c1, c2, c3 and c4 are functions of Z and u1p is dependent on the yet
to be determined t0. We take c4 = 0 to remove the exponential growth in u14
and separate out the contribution of t0Z that appears linearly in the particular
solution u1p

u1 = c1u11 + c2u12 + c3u13 + t0Zu(1)
1p + u(2)

1p , (8.7)

where

u(1)
1p = 1 − i[BT sech2(BT ) + tanh(BT )]A

B
, (8.8)

so that u(2)
1p has no unknowns left in it.

To put u1 in terms of the magnitude and phase functions q0, q1, f0 and f1, we
expand our previous approximation for u

u = (q0 + eq1)ei(f0+ef1) = q0eif0 + e(q1 + if1q0)eif0 + O(e2), (8.9)

so that

u0 = q0eif0 , (8.10)

u1 = (q1 + if1q0)eif0 (8.11)

and u1 = [q1 cos(f0) − f1q0 sin(f0)] + i[q1 sin(f0) + f1q0 cos(f0)]. (8.12)

By looking at the asymptotic behaviour of the solution u1 as t → ±∞, we find
the equation

u±
1T = −f±

1T (±B) + if±
1T (A). (8.13)

Since u11T , u12T and u1pT all go to zero in the limit t → ±∞, the above equation
can be used to find c3.
Proc. R. Soc. A

http://rspa.royalsocietypublishing.org/


Perturbations of dark solitons 19

 on July 5, 2012rspa.royalsocietypublishing.orgDownloaded from 
With this, we are now able to find a second-order differential equation for t0
from the Hamiltonian at O(e2)

d
dZ

H1 + d
dz

H2 = −4u∞ Im[F [u∞]]Re
∫∞

−∞
u0u∗

1dT + 2 Re
∫∞

−∞
F [u0]u∗

0Z dT

− 2ARe
∫∞

−∞
(F [u0]u∗

1T + F ′[u0][u1]u∗
0T ) dT , (8.14a)

where

F ′[u0][u1] = d
de

F [u0 + eu1]. (8.15)

On the left-hand side, we have the slow evolution of the O(e) terms and the
fast evolution of the O(e2) terms. H1 is dependent on u0 and u1 and is given by

H1 =
∫∞

−∞
Re(u0Tu∗

1T ) + (u2
∞ − |u0|2)Re(u0u∗

1 ) dT . (8.16)

H2 is dependent on u0, u1 and the order e2 correction u2. However, as before, we
assume a stationary (in the moving frame of reference) solution u2 (as was done
for u0 and u1), then the derivative of H2 with respect to the fast evolution variable
z only depends on the asymptotic behaviour of u0 and u1 and is given by

d
dz

H2 = 4u2
∞[u∞(q+2

1 + q−2
1 ) − A(q+2

1 − q−2
1 )]. (8.17)

Though it is not immediately obvious, we find that c1 and c2 do not contribute to
the Hamiltonian in equation (8.17), so t0 is the only unknown. We take t0(0) = 0,
and to find a suitable initial condition t0Z (0), we require that the Hamiltonian be
accounted for by H0 at z = 0; i.e. the higher order terms are initially zero

H1(0) = 0. (8.18)

Our prediction for t0 differs greatly from that given by methods based on a ‘so-
called’ complete set of squared Jost function. This discrepancy may be partially
explained by the assumption that the squared Jost function forms a basis for
the solution space of equation (8.2). The eigenfunctions are found in the inverse
scattering theory for the defocusing NLS equation with non-vanishing boundary
values (Zakharov & Shabat 1973), and as a direct result, the acquired basis
functions associated with the soliton are localized and bounded. However, we
have solved explicitly for the first correction term, and we find that the solution
has an expanding shelf. From this, we deduce that the squared Jost functions
associated with the soliton are an insufficient basis.

9. Dissipative perturbation

Let us return to the perturbation F [u] = igutt , however, we now consider the
evolution of a general dark soliton with u∞(0) = 1. As was the case for black
solitons, the background height u∞ is found to be constant from equations (1.4);
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Figure 4. (a) The predicted shelf edge overlaid on the contour plot of numerical results for
Df0 = 4p/5. (b) The numerical shelf height for various values of Df0 is plotted as are the asymptotic
approximations at z = 30. Here, F [u] = igutt , u∞ = 1 and eg = 0.05. (a) Solid lines, numerics;
dashed line, asymptotics. (b) Filled circles, numerics; dashed line, asymptotics. (Online version
in colour.)

i.e. u∞(Z ) = 1. In figure 4a, we see that the velocity of the soliton does not affect
the velocity of the shelf, which still moves with velocity V = ±u∞. Using the
equations derived in §§7 and 8, we can now solve for all relevant parameters

AZ = 0, s0Z = −4
3

gB3

u∞
, (9.1a)

q±
1 = −2

3
gB(u∞ ± A)

u∞
, f±

1t = ±4
3

gB(u∞ ± A)
u∞

(9.1b)

and t0ZZ = −16
9

g2B3A
u∞

, t0Z (0) = −2
3

gAB
u∞

. (9.1c)

We also note that these results agree with the black soliton when A = 0.
In the limit A → 0, we have q0 → u∞| tanh(u∞T )|; however, this has a
discontinuity in its derivative, so instead we used q0 = u∞ tanh(u∞T ) for our
black soliton calculations. As a result, there is a sign difference in q−

1 from
equation (2.9).

Unlike the speed of the shelf at the edges, the magnitude and phase,
q±
1 , f1t , depend on the soliton’s velocity (which is in turn related to the

soliton’s depth and the phase across the soliton). As illustrated in figure
4b, the shelf is shallower behind the soliton for larger speeds (or smaller
phase change Df0). The extra phase s0(z) = −ez 4

3gB3/u∞ induced by the
perturbation means that the spatial frequency of the soliton is different from
the frequency of the CW background on which it lies. Though s0 evolves
adiabatically, the soliton eventually becomes noticeably out of phase from
the background as shown in figure 5a. Here, the background phase (f+ and
f−) is constant since the fast evolution of the background phase was taken
out in equation (1.1). Finally, in figure 5b, we show the improvement finding
t0(Z ) makes on predicting the centre of the soliton over just using the
velocity A.
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Figure 5. (a) s0(Z ) plotted against the phase at plus and minus infinity along with the phase at
the centre of the soliton. (b) Two approximations for the soliton centre are shown: one using just
the velocity A and one taking into account t0(Z ). A comparison of numerics to asymptotics for
t0 is also given. Here, F [u] = igutt , eg = 0.05, and Df0 = 4p/5. (a) Solid line, numerics; dashed
line, asymptotics. (b) Solid line, numerics; dashed line, Az + t0; dotted line, Az . (Online version in
colour.)

10. Linear damping

We now apply our results to the case of linear damping

F [u] = −igu, (10.1)

which was both the first (Giannini & Joseph 1990) and a commonly used example
used in the study of perturbed dark solitons.

In this example, we now have a moving background found by solving
equation (1.4)

d
dZ

u∞ = −gu∞. (10.2)

From equations (7.15), we can determine the slowly varying soliton parameters

AZ = −gA, s0Z = g
B
u∞

, q±
1 = g

(u∞ ± A)
2Bu∞

, (10.3a)

f+
1T = −g

(u∞ + A)
Bu∞

, f−
1T = g

(u∞ − A)
Bu∞

(10.3b)

and t0ZZ = −gt0Z + g2 3A
2Bu∞

, t0Z (0) = g
A(0)

2B(0)u∞(0)
(10.3c)

Figure 6a shows that the existence of a raised shelf and dynamics of the
shelf edge are well predicted by the asymptotic theory. The background height
and trough of the soliton (A(Z )) are accurately approximated by our method
(figure 7a); this agrees with previously found approximations (Kivshar & Yang
1994). Our results for t0 and s0 are plotted in figure 7b. As mentioned earlier,
previous attempts using IST are not adequate (Chen et al. 1998; Lashkin 2004;
Ao & Yan 2005). t0 was not obtained in Kivshar & Yang (1994); furthermore, no
previous work has considered the evolution of the parameter s0.
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Figure 6. (a) The predicted shelf edge from the asymptotic theory overlaid on the contour plot of
numerical results. Here, F [u] = −igu, eg = 0.03 and Df0 = 4p/5. (b) The predicted shelf edge from
the asymptotic theory overlaid on the contour plot of numerical results. Here, F [u] = −ig|u|2u,
u∞(0) = 2, eg = 0.02 and Df0(0) = 7p/10. Solid lines, numerics; dashed lines, shelf edge. (Online
version in colour.)
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Figure 7. (a) Numerical compared with analytical results for both u∞ and A. (b) Numerical
compared with analytical results for both s0 and t0. Here, F [u] = −igu, eg = 0.03 and Df0 = 4p/5.
(a) Solid line, numerics; open circles, asymptotics. (b) Solid line, numerics; dashed line, asymptotics.
(Online version in colour.)

11. Two-photon absorption

Dark solitons have been proposed in the development of optical switching devices
(Luther-Davies et al. 1992). Here, materials with high nonlinearities are used to
reduce the power for soliton formation and the switching threshold; however, an
enhanced TPA coefficient also accompanies these materials. An example of TPA
with strong defocusing nonlinearity is the semiconductor ZnSe (Skinner et al.
1991). This is represented by the perturbation term

F [u] = −ig|u|2u. (11.1)

From equations (7.15), we can find all parameters other than t0, which are
given below. This yields the evolution of the background height and trough height
(figure 8a); we also find that the phase change across the core soliton does not
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Figure 8. (a) The background height and magnitude of the soliton trough found both numerically
and asymptotically. (b) Numerical results for the phase of u both initially and at z = 50. Here,
F [u] = −ig|u|2u, u∞(0) = 2, eg = 0.02 and Df0(0) = 7p/10. (a) Solid line, numerics; open circles,
asymptotics. (b) Solid line, z = 0; dashed line, z = 50. (Online version in colour.)

remain constant (as had been the case for our previous examples).

d
dZ

u∞ = −gu3
∞, (11.2a)

d
dZ

A = −g

(
2
3
A2 + 1

3
u2

∞

)
A, (11.2b)

d
dZ

Df0 = −4
3

gAB (11.2c)

and s0Z = g
B
u∞

(
2A2 + 1

3
u2

∞

)
(11.2d)

As in the linear damping example, a raised shelf develops around the core
soliton as seen in figure 6b. Again we see remarkable correlation with our
predicted shelf velocity. Figure 8a shows strong agreement between numerics
and asymptotic analysis for the evolution of both u∞(Z ) and A(Z ). Figure 8
shows that while the phase change across the core soliton decreases by half, this
is compensated for by the change in phase over the shelf, and the total phase
change from negative infinity to positive infinity remains constant, which agrees
with equation (7.19) (figure 8b).

12. Conclusion

In conclusion, we develop a novel approach to dark soliton perturbation theory
that breaks the problem into an inner region around the soliton and a shelf that
matches to the boundary at infinity. Under perturbation, a dark soliton develops
a shelf the edge of which propagates out at a speed equal to the magnitude of
the CW background. In analytical terms, the shelf arises owing to properties
of the perturbation, which serve to drive mean contributions in the amplitude
and growing terms in the phase. It is also found that the soliton can have a
different frequency from the CW background. The method can be applied to
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general perturbations that can have both moving and constant backgrounds.
For typical perturbations, the asymptotic approximations were calculated and
were compared favourably with direct numerical results. These comparisons
confirmed the existence of the analytically predicted shelf and support our
results. The non-vanishing background and soliton are treated separately from
the core soliton; in this way, we obtain a consistent perturbation theory for
dark solitons.

This research was partially supported by the US Air Force Office of Scientific Research, under
grant FA9550-09-1-0250 and the NSF under grant DMS-0905779.
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