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Nonlinear dynamics of wave packets in parity-time-symmetric optical lattices near the phase-transition point is
analytically studied. A nonlinear Klein–Gordon equation is derived for the envelope of these wave packets.
A variety of phenomena known to exist in this envelope equation are shown to also exist in the full equation,
including wave blowup, periodic bound states, and solitary wave solutions. © 2012 Optical Society of America
OCIS codes: 190.0190, 160.5293.

Linear Schrödinger operators with complex but parity-
time (PT )-symmetric potentials have the unintuitive
property that their spectra can be completely real [1].
This phenomenon was first studied in quantum me-
chanics where a real spectrum is required to guarantee
real energy levels. The same phenomenon was later
investigated in optics, where PT -symmetric potentials
could be realized by employing symmetric index guiding
and an antisymmetric gain/loss profile [2–4]. In this op-
tical setting, PT potentials have been experimentally
realized [5,6]. In temporal optics, PT -symmetric lattices
have been experimentally obtained as well [7]. So far, a
number of physical phenomena in optical PT systems
have been reported, including phase transition (PT -
symmetry breaking), nonreciprocal Bloch oscillation,
unidirectional propagation, distinct pattern of diffrac-
tion, formation of soliton families, and so on [5–12]. The
search of additional new behaviors in optical PT systems
is still ongoing.
In this Letter, we analytically study nonlinear dynamics

of wave packets in PT -symmetric optical lattices near
the phase-transition point (where bandgaps close and
Bloch bands intersect with each other transversely).
A nonlinear Klein–Gordon equation is derived for the
envelope of these wave packets near the band inter-
section. Based on this envelope equation, we predict a
variety of phenomena, such as wave splitting, wave blow-
up, periodic bound states, and solitary wave states. We
further show these predicted phenomena occur in the full
model as well.
The paraxial model for nonlinear propagation of light

beams in PT -symmetric optical lattices is

iΨz �Ψxx � V�x�Ψ� σjΨj2Ψ � 0; (1)

where z is the propagation axis, x is the transverse axis,

V�x� � V2
0�cos�2x� � iW 0 sin�2x�� (2)

is aPT -symmetric potential, V2
0 is the potential depth,W0

is the relative gain/loss strength, and σ � �1 is the sign of
nonlinearity. All variables are nondimensionalized.

First we discuss the linear diffraction relation of
Eq. (1) at the phase-transition pointW0 � 1 [8,12]. In this
case, the linear equation of (1) can be solved exactly [12].
Its Bloch solutions are

Ψ��x; z; μ� � I��k�2m��V0eix�e−iμz; (3)

where Ik is the modified Bessel function, μ � �k� 2m�2
is the diffraction relation, k is in the first Brillouin zone
k ∈ �−1; 1�, and m is any non-negative integer. This dif-
fraction relation is depicted in Fig. 1(A), where different
colors indicate different Bloch bands. At k � 0 and �1,
adjacent Bloch bands intersect each other transversely
like. Because of this intersection (degeneracy), wave
packets near these points will exhibit distinctive dy-
namics that we will reveal next.

Fig. 1. (Color online) (A) Diffraction relation. (B) Magnitude
and phase of eigenfunction ϕ (solid blue) and generalized eigen-
function ϕg (dashed red) for μ � 1 and V 0 �

���
6

p
. (C) Linear

unidirectional wavepacket and (D) linear wavepacket splitting
in Eq. (1) at the phase-transition point W0 � 1.
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At these intersection points, Ψ� � Ψ−. Thus Bloch
solutions (3) are degenerate and 2π periodic in x. Posed
as an eigenvalue problem for Ψ � ϕ�x�e−iμz in the linear
equation of (1), we get Lϕ � −μϕ, where L≡ ∂xx � V0�x�,
and V0�x� is the PT lattice at the phase-transition point
W0 � 1. Then at these band-intersection points, the
eigenvalues are μ � n2, where n is any positive integer.
The corresponding eigenfunctions are

ϕ�x� � In�V0eix� �
X∞
j�0

�V0eix ∕2�2j�n

j!� j � n�! : (4)

These eigenvalues μ � n2 all have geometric multipli-
city 1 and algebraic multiplicity 2; thus there exists a gen-
eralized eigenfunction ϕg satisfying

�L� μ�ϕg � ϕ: (5)

For V0 �
���
6

p
and n � 1, this eigenfunction and gener-

alized eigenfunction are plotted in Fig. 1(B).
Now we consider nonlinear dynamics of wave packets

near these band-intersection points. For convenience, we
first take the PT lattice to be exactly at the phase-transi-
tion point (i.e., W0 � 1). Generalization to lattices near
the phase-transition point will be made afterward.
Nonlinear wave-packet solutions near a band-

intersection point can be expanded into a perturbation
series

Ψ � e−iμz�ϵA�X; Z�ϕ�x� � ϵ2ψ1 � ϵ3ψ2 �…�; (6)

where μ � n2 is the propagation constant at the band
intersection, ϕ�x� is the degenerate Bloch mode given
in Eq. (4), A�X; Z� is the envelope of this Bloch mode,
X � ϵx, Z � ϵz are slow variables, and 0 < ϵ ≪ 1 is a
small positive parameter. Substituting the above pertur-
bation series into the original Eq. (1), this equation at
O�ϵ� is automatically satisfied. At order ϵ2 we have

�L� μ�ψ1 � −iAZϕ − 2AXϕx: (7)

The solution to this equation is

ψ1 � −iAZϕ
g − 2AXϕ

d; (8)

where ϕg is the generalized Bloch mode defined in (5),
and

ϕd � �L� μ�−1ϕx: (9)

This ϕd solution exists and can be determined by
Fourier series [12].
At O�ϵ3� we get

�L� μ�ψ2 � −AZZϕ
g � AXX�4ϕd

x − ϕ�
� i2AZX�ϕd � ϕg

x� − σjAj2Ajϕj2ϕ: (10)

The solvability condition of this equation is that its
right-hand side be orthogonal to the adjoint homoge-
neous solution ϕ�. Using Fourier expansions of solutions

ϕg and ϕd (see [12]), this solvability condition then yields
the following nonlinear Klein–Gordon equation for the
envelope function A�X; Z�:

AZZ − 4n2AXX � γjAj2A � 0; (11)

where

γ � �−1�n�1 2σn
2

π

Z
π

−π
jϕj2ϕ2dx: (12)

In view of the formula (4) for ϕ, it is easy to see
that γ is real and sgn�γ� � �−1�n�1σ. For the values of
V0 �

���
6

p
and n � 1, which we will use in later numerical

simulations, γ ≈ 11.0430σ.
Now we extend the above envelope equation to the

case where the PT lattice is near the phase-transition
point (i.e., W0 ∼ 1). Following similar perturbation analy-
sis, we find that when μ � n � 1 (the lowest band-
intersection point) and W0 � 1 − cϵ2, the envelope is
governed by a slightly more general nonlinear Klein–
Gordon equation,

AZZ − 4n2AXX � αA� γjAj2A � 0; (13)

where γ is as given in (12), α � cV4
0 ∕2, and the ψ1 solu-

tion in (6) is still given by Eq. (8). When μ � n2 with n > 1
and W 0 � 1 − cϵ, the envelope Eq. (13) will contain an
additional term proportional to iAZ . But this iAZ term
can be eliminated through a gauge transformation
A → Ae−icV

4
0 ∕4�n2−1�, and the transformed equation re-

mains the same as (13), except that α � c2V8
0 ∕64 for

n � 2 and α � 0 for n > 2. If c � 0 (i.e., at the phase-
transition point), then α � 0; hence Eq. (13) reproduces
Eq. (11) as a special case. When n > 1, the ψ1 solution (8)
will also contain an additional term proportional to icA.

The nonlinear Klein–Gordon Eq. (13) is second-order
in Z, which means that two initial conditions, A�X; 0� and
AZ�X; 0�, are needed. These two initial conditions can be
obtained from the initial conditions of the perturbation
series (6) at orders ϵ and ϵ2, i.e., from the initial envelope
A�X; 0� as well as ψ1jz�0. This ψ1jz�0 generally contains
many eigenmodes of the operator L, but only the ϕg

component in it affects the dynamics of envelope A. If
we denote B�X� as the envelope function of the ϕg com-
ponent in ψ1jz�0, then by projecting ψ1jz�0 [such as from
(8)] onto ϕg, we find that

B�X� � −i�AZ�X; 0� � 2nAX�X; 0��: (14)

This relation holds for all n values. Thus, initial condi-
tions for the original PT model (1) and those for the
envelope Eq. (13) can be related as

Ψ�x; 0� � ϵA�X; 0�ϕ�x� � ϵ2B�X�ϕg�x�: (15)

This initial-value connection will be used in our numer-
ical simulations later.

Now we examine the envelope dynamics in the non-
linear Klein–Gordon Eq. (13), and show that the corre-
sponding wavepacket dynamics occurs in the original
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PT model (1) too. In this discussion, we take n � 1,
V0 �

���
6

p
and ϵ � 0.1 for definiteness.

First,weconsiderthelinearKlein–GordonEq.(13)at the
phase-transition point, i.e., AZZ − 4n2AXX � 0. This is the
familiar second-order wave equation. It admits unidirec-
tional wave solutions F�X − 2nZ� as well as bidirectional
wave solutions F�X − 2nZ� � G�X � 2nZ�. In the original
linearPT model (1),we find that the correspondingwave-
packet solutions also exist. Examples are displayed in
Figs. 1(C) and 1(D). Note that the wave splitting in
Fig. 1(D) isamanifestationof the transversely-intersecting
diffraction structure at the band-intersection point,
while the unidirectional propagation in Fig. 1(C) occurs
for B�X� � 0.
Next we consider envelope solutions in the nonlinear

Klein–Gordon Eq. (13) below the phase-transition point,
i.e., W 0 < 1, or α > 0 (above the phase-transition point,
infinitesimal linear waves are unstable; thus it is not pur-
sued). When the nonlinearity is self-defocusing (σ � −1),
γ ≈ −11.0430 < 0. In this case, envelope solutions can
blow up to infinity in finite distance [13]. One such exam-
ple is shown in Fig. 2 (upper left panel) for c � 1 (α � 18)
and initial conditions A�X; 0� � 1.2 sech�X�, AZ�X; 0� �
−2AX�X; 0� (B�X� � 0). In the full nonlinear PT model
(1), we have found similar blowup solutions, which
are displayed in Fig. 2 (upper right panel). This solution-
blowup under self-defocusing nonlinearity is very sur-
prising. Note that in the full model (1), our asymptotic
envelope approximation breaks down as the singular
(blowup) point is approached. In this case, the amplitude
of the full-model solution eventually saturates, but its
power still grows unbounded [12].
Under self-defocusing nonlinearity, the envelope

Eq. (13) also admits X -localized and Z-periodic bound
states. One example with c � 1 (below the phase-
transition point) is shown in Fig. 2 (lower left panel).
The initial condition for this solution is A�X; 0� �
sech�X� and AZ�X; 0� � 0 �B�X� � −2iAX�X; 0��. In the
full nonlinear PT model (1), we have found similar per-
iodic bound states as well, [see Fig. 2 (lower right panel)].
Under self-defocusing nonlinearity and below the

phase-transition point, the envelope Eq. (13) also admits
stationary solitary waves A�X; Z� � F�X�eiωZ when ω lies
inside the bandgap −

���
α

p
< ω <

���
α

p
. These solitary envel-

ope solutions correspond to the solitons of the full non-
linear PT model (1) reported in [8,12].
If the nonlinearity is self-focusing (σ � 1), envelope so-

lutions do not blow up, periodic bound states cannot be
found, and stationary solitary waves do not exist in the
envelope equation. In this case, nonlinear diffracting
solutions similar to the linear diffracting pattern reported
in [10] exist. In addition, solutions periodic in both X
and Z can be found.
In summary, we have shown that the nonlinear Klein–

Gordon equation governs the envelope dynamics of
wavepackets in PT lattices near the phase-transition
point. We have also shown that a variety of phenomena
in this envelope equation (such as wave blowup and

periodic bound states) occur in the full PT model too.
These findings open new possibilities for wave engineer-
ing in PT lattices.

This work is supported in part by AFOSR.
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Fig. 2. (Color online) Nonlinear wavepacket solutions below
the phase-transition point under self-defocusing nonlinearity.
Top: a blowup solution. Bottom: a periodic bound state. Left:
envelope solutions jAj. Right: full solutions jΨj.
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