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Stability analysis for solitons in PT -symmetric optical lattices
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Stability of solitons in parity-time (PT )-symmetric periodic potentials (optical lattices) is analyzed in both
one- and two-dimensional systems. First we show analytically that when the strength of the gain-loss component
in the PT lattice rises above a certain threshold (phase transition point), an infinite number of linear Bloch bands
turn complex simultaneously. Second, we show that while stable families of solitons can exist in PT lattices,
increasing the gain-loss component has an overall destabilizing effect on soliton propagation. Specifically, when
the gain-loss component increases, the parameter range of stable solitons shrinks as new regions of instability
appear. Third, we investigate the nonlinear evolution of unstable PT solitons under perturbations, and show that
the energy of perturbed solitons can grow unbounded even though the PT lattice is below the phase transition
point.
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I. INTRODUCTION

Recent interest in the study of parity-time (PT ) symmetric
optical potentials has its roots in quantum mechanics. In
quantum mechanics, in order for the energy levels to be real and
the theory to be probability conserving, it is usually assumed
that the Hamiltonian (Schrödinger) operator be Hermitian.
However, in the past decade there has seen considerable
attention [1–4] in a weaker version of the Hermiticity axiom
which requires that the Hamiltonian instead only exhibit space-
time reflection symmetry (PT symmetry). While there has
been much theoretical success in developing a non-Hermitian
quantum field theory, the phenomena unique to this class
of pseudo-Hermitian systems have not yet been observed
experimentally.

The same Schrödinger equation from quantum mechanics
applies also to optics. Motivated by this connection, optical
systems which have PT -symmetric potentials have been
formulated [5]. A PT -symmetric optical potential V (x) is
realizable by the careful distribution of gain and loss in the
media so that it satisfies the PT symmetry V (x) = V ∗(−x),
where x is the spatial coordinate and ‘∗’ stands for complex
conjugation. That is, the refractive-index profile of the media
is even and the gain-loss profile is odd. Such opticalPT media
have been created experimentally [6,7]. These linear PT
media undergo phase transition as the gain-loss component
crosses a certain threshold [1,6–8]. Below this threshold,
all eigenvalues of the PT potential are real; but above this
threshold, complex eigenvalues appear, hence the intensity of
a light beam grows exponentially during linear propagation.
The nature of this phase transition (especially for periodic PT
potentials) has not been fully understood yet.

These phenomena may also be studied in a nonlinear
context by considering the existence of localized modes called
solitons [8,9]. When a system contains gain and loss, solitons
generally exist only at special values of the propagation
constant [10]. However, since PT potentials can admit all-real
linear spectra, solitons could exist at continuous ranges of the
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propagation constant, which is quite remarkable. So far, soliton
families inPT -symmetric periodic potentials with defects and
in PT -symmetric nonlinear potentials have been investigated
[11–14]. Solitons in an analogous PT system, namely, the
dual-core waveguide with Kerr nonlinearity and balanced gain
and loss, have also been studied [15]. But stability properties
of these PT solitons (especially in periodic PT potentials)
have not been carefully examined.

In this paper, we investigate linear phase transition and
stability of (nonlinear) solitons in PT -symmetric periodic
potentials (optical lattices) in both one and two spatial dimen-
sions. Our mathematical model is the nonlinear Schrödinger
(NLS) equation with a PT lattice potential,

iUz + Uxx + Uyy + V (x,y)U + σ |U |2U = 0, (1.1)

where σ = ±1 denotes the focusing and defocusing nonlinear-
ity, and the potential V (x,y) is periodic in x and y and satisfies
the PT symmetry V (x,y) = V ∗(−x,−y). For simplicity, we
take this PT lattice potential to be

V (x) = V0[cos2(x) + iW0 sin(2x)] (1.2)

in one dimension (1D) and

V (x,y) = V0{cos2(x) + cos2(y) + iW0[sin(2x) + sin(2y)]}
(1.3)

in two dimensions (2D). Here V0 (>0) is the depth of the real
component of the potential, W0 is the relative magnitude of
the imaginary component, and the period of this PT lattice
is π . For this system, we first show analytically that when
the strength of the gain-loss component [the imaginary part of
V (x,y)] in thePT lattice rises above a certain threshold (phase
transition point), an infinite number of linear Bloch bands turn
complex simultaneously. This simultaneous bifurcation of an
infinite number of complex eigenvalues at the phase transition
point has never been reported before for any PT -symmetric
potentials to our best knowledge [1,9]. Second, we show that
while stable families of solitons can exist inPT lattices (below
the phase transition point), increasing the gain-loss component
has an overall destabilizing effect on soliton propagation.
Specifically, when the gain-loss component increases, the
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parameter range of stable solitons shrinks as new regions
of instability appear. Third, we investigate the evolution of
unstable PT solitons under perturbations, and show that the
energy of these perturbed solitons can grow unbounded even
if the PT lattice is below the phase transition point.

II. SIMULTANEOUS COMPLEX-EIGENVALUE
BIFURCATION AT THE PHASE TRANSITION POINT

We begin by investigating the bifurcation of the continuous
spectrum (Bloch bands) of the linear Schrödinger operator in
Eq. (1.1) at the phase transition point. The phase transition
point is a point above which the spectrum is no longer
purely real as the strength of the imaginary (gain-loss)
contribution relative to the real (refractive-index) contribution
in the potential is increased. We will show that at the phase
transition point, an infinite number of Bloch bands turn
complex simultaneously.

We first consider this bifurcation in one dimension. In this
case, the linear Schrödinger equation is

iUz + Uxx + V (x)U = 0, (2.1)

where the PT lattice potential V (x) is given in Eq. (1.2). The
continuous spectrum of this Schrödinger equation consists of
Bloch modes of the form

U (x,z) = p(x; k)eikx−iμz, (2.2)

where p(x; k) is a π -periodic function in x, k is the wave
number in the irreducible Brillouin zone −1 � k � 1, and μ

is the propagation constant. The values of μ and k are related.
The relation μ = μ(k) is called the diffraction relation, and
all admissible values of μ form the continuous spectrum of
Eq. (2.1).

For the PT lattice (1.2), the phase transition point is
known to be W0 = 0.5 [8]. Below this phase transition point
(W0 < 0.5), the continuous spectrum is all real and comprises
an infinite number of segments (known as Bloch bands).
The gaps between these Bloch bands are called band gaps;
the largest, which contains everything to the left of the
continuous spectrum, is the semi-infinite gap and further gaps
are numbered (in our case from left to right). As an example,
at W0 = 0.4 and V0 = 6, the diffraction relation is shown
in Fig. 1 and the Bloch bands and band gaps are shown in
Fig. 2.

As W0 increases, band gaps shrink (see Fig. 2). At the phase
transition point (W0 = 0.5), all Bloch bands merge (see Figs. 1
and 2). Above the phase transition point (W0 > 0.5), complex
eigenvalues appear in the Bloch bands. This phase transition
has been reported before [8]. For example, the diffraction
relation at W0 = 0.6 and V0 = 6 is displayed in Fig. 1. It
is seen that complex eigenvalues μ arise in the Bloch bands
near edges k = ±1 of the Brillouin zone.

What was not known about this phase transition, however,
is that right above this phase transition point, complex
eigenvalues appear simultaneously in an infinite number of
Bloch bands. To demonstrate, the dependence of eigenvalues
μ on W0 at Brillouin-zone edge k = 1 is shown in Fig. 2. We
can see that at the phase transition point W0 = 0.5, complex
eigenvalues μ bifurcate out simultaneously from point A where
the first and second Bloch bands merge, and from point C
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FIG. 1. (Color online) Diffraction relations of PT lattices (1.2)
for three W0 values 0.4, 0.5 (upper panel), and 0.6 (lower panel) at
V0 = 6. The inset in the lower right panel is amplification of the small
boxed region near k = 1 and Im[μ] = 0 of the same panel.

where the third and fourth Bloch bands merge, with both
band mergings occurring at the Brillouin-zone edges k = ±1
(this bifurcation of complex eigenvalues does not occur from
point B where the second and third Bloch bands merge at the
Brillouin-zone center k = 0).

Below, we show analytically that at the phase transition
point, an infinite number of complex eigenvalues bifurcate
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FIG. 2. (Color online) Band-gap structure of the PT lattice (1.2)
as W0 crosses the phase transition point 0.5 (with V0 = 6). Above
this phase transition point, complex eigenvalues μ bifurcate out
simultaneously from points A, C, . . . , where Bloch bands merge
(see the upper panel). The real and imaginary parts of these complex
eigenvalues vs W0 at the Brillouin edge k = 1 are plotted in the upper
and lower panels, respectively.
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out simultaneously from an infinite number of Bloch bands.
In particular, bifurcations of these complex eigenvalues occur
at points where the (2n − 1)-th and the 2n-th Bloch bands
merge (at k = ±1), but not at points where the 2n-th and
the (2n + 1)-th Bloch bands merge (at k = 0), for all positive
integers n = 1,2,3, . . . (see Figs. 1 and 2).

We look for solutions to Eq. (2.1) of the form U =
u(x)e−iμz, where u satisfies the equation

μu + uxx + V0(cos2 x + iW0 sin 2x)u = 0. (2.3)

At the phase transition point W0 = 0.5, Eq. (2.3) reduces to(
μ + V0

2

)
u + uxx + V0

2
(e2ix)u = 0. (2.4)

Under the variable transformation ξ = i
√

V0/2 eix , this equa-
tion becomes Bessel’s equation,

ξ 2uξξ + ξuξ +
(

ξ 2 − μ − V0

2

)
u = 0, (2.5)

thus it has exact solutions in terms of Bessel functions [16]

u(x) = Jk

(
i

√
V0

2
eix

)
, (2.6)

where k = ±
√

μ + V0
2 , or

μ = −V0

2
+ k2. (2.7)

This is the exact diffraction relation at the phase transition
point, as can be seen by utilizing the power-series expansion
of the Bessel function to expand the above Bloch solution (2.6)
into a Fourier series

Jk

(
i

√
V0

2
eix

)
=

∞∑
m=0

(V0/8)m

m!�(m + k + 1)
ei(2m+k)x

≡ eikxρ(e2imx), (2.8)

where k is seen to be the wave number and ρ(e2imx) is a
π -periodic function. By factoring out the π -periodic term
e2inx from eikx (for a certain integer n) and combining it
with ρ(e2imx), one can restrict the wave number k to be in
the Brillouin zone −1 � k � 1, as is customary in the Bloch
theory (see Fig. 1). The diffraction relation (2.7) shows that the
continuous spectrum at the phase transition point W0 = 0.5
is −V0/2 � μ < ∞ and is entirely real. When k = n is an
integer, the two Bessel solutions J±k(x) in Eq. (2.6) are linearly
dependent. This corresponds to the points where different
Bloch bands merge (see points A, B, C, . . . in Fig. 2), and
the associated μ values are

μ = −V0

2
+ n2, n = 0,1,2, . . . . (2.9)

These μ values are located at either k = 0 or k = ±1 of the
Brillouin zone on the diffraction curves, depending on whether
n is even or odd (see Fig. 1), and their Bloch functions are
π -periodic for even n and 2π -periodic for odd n.

TABLE I. Coefficients in the μ expansion (2.11a).

n0 n1 n2 n3

0 0 V0/8 0

1 ±i
V

1/2
0
2 V0/32 ±i

(
V

−1/2
0

4 + V
3/2
0
29

)
2 0 − 5V0

48 , V0
48 0

3 0 −V0/64 ±i
V

3/2
0
29

N 0 − V0
8

1
N2−1

0

We now consider the case where W0 is near the phase
transition point 0.5, i.e., V0(W0 − 0.5) ≡ ε � 1. In this case,
Eq. (2.3) becomes

(
μ + V0

2

)
u + uxx + V0

2
(e2ix)u + εi sin(2x) = 0, (2.10)

whose solutions and the corresponding diffraction relation μ =
μ(k) can be derived by the perturbation method. For simplicity,
we only derive its solutions u(x) which are π or 2π periodic
(these Bloch solutions are degenerate). The corresponding μ

values are then those with k = 0 or k = ±1 on the diffraction
curves (see Fig. 1). These solutions and the associated μ values
can be expanded as power series in ε1/2,

μ = −V0

2
+ n2

0 + ε1/2n1 + εn2 + ε3/2n3 + · · · , (2.11a)

u(x) = u0 + ε1/2u1 + εu2 + ε3/2u1 + · · · , (2.11b)

where n0 = 0,1,2, . . ., and coefficients n1,n2,n3, . . . in
Eq. (2.11a) are certain constants. Details of this perturbation
calculation are presented in Appendix A. The main results
for these coefficients n1,n2, . . . at various n0 values are
summarized in Table I.

We see from this table that when n0 = 1,3, which cor-
respond to points A and C in Fig. 2, the coefficient n1

or n3 is imaginary; thus complex eigenvalues bifurcate out
simultaneously above the phase transition point (ε > 0). In
addition, the imaginary part of these complex eigenvalues at
n0 = 3 is much smaller than that at n0 = 1, since the former
is of order ε3/2 while the latter is of order ε1/2. However,
no complex eigenvalues appear when n0 = 0,2 (the latter
corresponds to point B in Fig. 2). All these analytical results are
in complete qualitative and quantitative agreement with Fig. 2,
as we have carefully checked. Continuing these calculations
to higher n0 values, we have found that the coefficient n2m+1

is always imaginary for n0 = 2m + 1, where m = 0,1,2, . . ..
Thus complex eigenvalues bifurcate out simultaneously from
all odd values of n0 at the phase transition point W0 = 0.5.

Table I also shows that below the phase transition point
(W0 < 0.5, or ε < 0), the eigenvalue μ from the expansion
(2.11a) is always real for all integers n0. In addition, a
gap opens at the corresponding μ values of −V0/2 + n2

0.
Furthermore, the width of the nth gap is of order εn/2.
Above the phase transition point, the even-numbered band
gaps reopen, whereas the odd-numbered band gaps close,
and complex eigenvalues bifurcate out. All these analytical
conclusions match perfectly with Fig. 2 as well.

023822-3



SEAN NIXON, LIJUAN GE, AND JIANKE YANG PHYSICAL REVIEW A 85, 023822 (2012)

Now we consider eigenvalue bifurcations in two dimen-
sions. In this case, the 2D linear Schrödinger equation (1.1)
is

iUz + Uxx + Uyy + V (x,y)U = 0, (2.12)

where the PT lattice potential V (x,y) is given in Eq. (1.3).
This 2D potential is separable, thus the Bloch modes of
Eq. (2.12) are [17]

U (x,y,z) = eik1x+ik2y−iμzp(x; k1)p(y; k2), (2.13)

where p(x; k) is the 1D π -periodic function as given in
Eq. (2.2);

μ = μ̂(k1) + μ̂(k2) (2.14)

is the 2D diffraction relation; k1,k2 are Bloch wave numbers
in x and y directions and are located inside the irreducible
Brillouin zone −1 � k1,k2 � 1; and the function μ̂(k) is the
diffraction relation of the 1D equation (2.1). This diffraction
relation (2.14) shows that complex eigenvalues appear in this
2D PT lattice if and only if complex eigenvalues appear
in the 1D PT lattice (1.2). Thus all eigenvalues in the 2D
system (2.12) are real when W0 � 0.5, and a phase transition
occurs at W0 = 0.5 above which complex eigenvalues arise.
In addition, an infinite number of Bloch bands turn complex
simultaneously right above this phase transition point.

III. STABILITY OF PT SOLITONS IN ONE DIMENSION

In the presence of cubic nonlinearity, the mathematical
model becomes the NLS equation (1.1) with a PT lattice
potential. In this case, light can self-localize and form solitons.
In this section, we study these PT solitons and their linear-
stability behaviors in one dimension.

In one dimension, the NLS equation (1.1) becomes

iUz + Uxx + V (x)U + σ |U |2U = 0. (3.1)

Here the PT lattice V (x) is taken as (1.2) with V0 = 6, and
σ = ±1. Solitons in this model are sought in the form

U (x,z) = e−iμzu(x), (3.2)

where u(x) is a localized function, and μ is a real propagation
constant. These solitons can be computed by either the squared
operator iteration method or the Newton-conjugate-gradient
method applied to the normal equation [17]. They exist when μ

lies inside band gaps of the linear system for W0 both below and
above the phase transition point. Above the phase transition
point (W0 > 0.5), linear waves amplify exponentially during
propagation, thus any solitons would also be unstable to
perturbations. So we only need to consider W0 � 0.5 below.

To determine the linear stability of these PT solitons, we
perturb them as

U = e−iμz[u(x) + ũ(x) eλz + w̃∗(x) eλ∗z], (3.3)

where |ũ|,|w̃| � |u|. After substitution into Eq. (3.1) and
linearizing, we arrive at the eigenvalue problem

iL
(

ũ

w̃

)
= λ

(
ũ

w̃

)
, (3.4)
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FIG. 3. (Color online) One-dimensional PT solitons in the semi-
infinite gap under focusing nonlinearity (σ = 1) for V0 = 6 and
W0 = 0.45. Left: Power curves of these solitons; the lower curve
is for fundamental solitons and the upper curve for dipole solitons;
solid blue and dashed red lines represent stable and unstable solitons,
respectively (the same holds for all other figures); the shaded region
is the first Bloch band. Right: Profile u(x) of a fundamental soliton
at μ = −3.5 (marked by a dot on the lower curve of the left panel);
the solid blue line is for the real part and dashed pink line for the
imaginary part.

where

L =
(

L11 L12

L21 L22

)
, L11 = μ + ∂xx + V (x) + 2σ |u|2,

L12 = σu2, L21 = −σ (u2)∗,
L22 = −[μ + ∂xx + V ∗(x) + 2σ |u|2].

This eigenvalue problem can be computed by the Fourier collo-
cation method (for the full spectrum) or the Newton-conjugate-
gradient method (for individual discrete eigenvalues) [17]. If
eigenvalues with positive real parts exist, the soliton is linearly
unstable; otherwise it is linearly stable.

We first consider PT solitons in the semi-infinite gap under
focusing nonlinearity (σ = 1). For W0 = 0.45, two families of
PT solitons are obtained and their power curves are displayed
in Fig. 3 (left). Here the power of a soliton is defined as

P (μ) =
∫ ∞

−∞
|u(x; μ)|2dx. (3.5)

In this figure, the lower power curve is for the fundamental
solitons which exhibit the same PT symmetry u∗(x) = u(−x)
and whose real parts possess a single dominant peak. The
profile of such a soliton at μ = −3.5 is displayed in Fig. 3
(right). This soliton family bifurcates out of the first Bloch
band, and the solitons near this Bloch band are low-amplitude
Bloch-wave packets. We have found that the entire branch
of this fundamental-soliton family is linearly stable, which is
indicated by solid lines of its power curve in Fig. 3 (left). The
upper power curve in Fig. 3 (left) is for the dipole solitons.
This power curve features double branches which terminate
before reaching the first Bloch band (a similar phenomenon
occurs in purely real lattices [17,18]). Profiles of three such
solitons on the lower power branch are displayed in Fig. 4
(top). It is seen that the real parts of these dipole solitons
possess two dominant peaks of opposite phase (which is
why they are termed dipole solitons). Unlike the fundamental
solitons, these dipole solitons are linearly stable only in a
certain portion of their existence region. Specifically, only
dipole solitons on the lower branch and with μ � μa ≈ −3.8
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FIG. 4. (Color online) Dipole solitons (top) and their linear-
stability spectra (bottom) for three μ values in the semi-infinite gap.
The power curve of these dipole solitons is shown in Fig. 3, and the
locations of these solitons are marked by dots on that power curve.

are stable [see Fig. 3 (left)]. For dipole solitons in this region,
their spectra are entirely imaginary [see Fig. 4 (bottom left)].
At μ = μa , stability switching occurs where a quadruple
of complex eigenvalues bifurcates off of the edge of the
continuous spectrum [see Fig. 4 (bottom center)]. Within the
unstable region, there is a second eigenvalue bifurcation at
μ ≈ −3.4 of the lower branch (near and on the left side of the
power minimum) where a pair of real eigenvalues bifurcates
from zero [see Fig. 4 (bottom right)]. Some of these stability
behaviors on dipole solitons are similar to those in the purely
real potential (W0 = 0) [17]. A notable difference is that for
real potentials, real eigenvalues bifurcate out of the origin
exactly at the minimum of the power curve [17], whereas
here this real-eigenvalue bifurcation occurs not at the power
minimum. An analytical explanation for this new phenomenon
is given in Appendix B.

Next we consider PT solitons in the first gap under
defocusing nonlinearity (σ = −1). Again, for W0 = 0.45, two
families of PT solitons are obtained and their power curves
are displayed in Fig. 5 (left) with stability results indicated.
The lower curve is for fundamental solitons whose profiles
at two μ values are depicted in Fig. 5 (top right panel),
while the upper curve is for dipole solitons, whose profiles
are similar to those in Fig. 6 (middle panel) below. The
fundamental-soliton family bifurcates out of the first Bloch
band, whereas the dipole family does not. We have found that
all solitons in this dipole family are linearly unstable [see Fig. 5
(left)]. The fundamental-soliton family, however, is linearly
stable when μ � μb ≈ −1.77. At μ = μb, stability switching
occurs where a pair of real eigenvalues bifurcates out from
zero (see Fig. 5). Notice that unlike in real potentials [17],
this zero-eigenvalue bifurcation does not occur at a power
extremum since the potential here is complex. An explanation
for this will be presented in Appendix B.

The stability results of PT solitons in Figs. 3–5 were
obtained for a specific W0 value of 0.45. Now we discuss how
these stability results change when W0 steadily increases from
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FIG. 5. (Color online) One-dimensional PT solitons in the first
gap under defocusing nonlinearity (σ = −1) for V0 = 6 and W0 =
0.45. Left: Power curves of these solitons; the lower curve is for
fundamental solitons and the upper curve for dipole solitons. Top
right: Two fundamental solitons at μ = −2 and −1.7 (marked by
dots in the left panel). Bottom right: Linear-stability spectra of these
solitons.

0 to 0.5. First we consider PT solitons in the semi-infinite gap
under focusing nonlinearity. We find that when 0 � W0 < 0.5,
the entire fundamental-soliton family remains stable. The
dipole family, however, is stable only on the left side of
its lower branch (see Fig. 3), and this stable region shrinks
as W0 increases. Next we consider PT solitons in the first
gap under defocusing nonlinearity. When W0 = 0 (i.e., the
lattice is real), the fundamental-soliton family is stable in the
entire first gap [17]. As W0 rises above approximately 0.3,
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FIG. 6. (Color online) Dipole solitons in the first gap under
defocusing nonlinearity (σ = −1) at W0 values 0.35 and 0.4 (with
V0 = 6). Top: Power curves. Middle: Soliton profiles at μ = −2
(marked by dots in the top panel). Bottom: Linear-stability spectra of
the solitons in the middle panel.
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an unstable region grows off the edge of the second band.
At the stability switching point a pair of real eigenvalues
bifurcates from zero as illustrated in Fig. 5. Regarding the
dipole-soliton family, its entire upper branch is unstable for
all W0 values. Its entire lower branch is also unstable when
W0 > Wa ≈ 0.44. For W0 < Wa , a certain portion of its lower
branch is stable; but as W0 increases, this stable region shrinks
and then totally disappears when W0 > Wa . To demonstrate
this reduced stability of dipole solitons with increasing W0, the
power curves of these dipole solitons at two W0 values of 0.35
and 0.4 are shown in Fig. 6 (top panel) with stability results
indicated. The soliton profiles at μ = −2 are also shown in
the middle panel of the same figure. It is seen that the stable
region of dipole solitons at W0 = 0.4 is much shorter than that
at W0 = 0.35. Notice also that as W0 increases, the width of the
first gap decreases, which is often a sign of decreased stability.
The unstable region on the lower branch is largely located near
the edge of the second Bloch band, and the instability in this
region is caused by a quadruple of complex eigenvalues [see
Fig. 6 (bottom panel)].

The above stability results of PT solitons show that as
W0 increases (but still below the phase transition point), the
stable regions of PT solitons generally shrink (see Fig. 6).
The only exception is the fundamental-soliton family in the
semi-infinite gap under focusing nonlinearity, which remains
entirely stable up to the phase transition point. Overall, the
inclusion of the gain-loss component in the PT lattice has a
destabilizing effect on solitons.

IV. STABILITY OF PT SOLITONS IN TWO DIMENSIONS

In this section we analyze the linear stability of solitons
in a two-dimensional PT lattice. We will show that the
destabilizing effect of the gain-loss component is more
prominent in this case, even for fundamental solitons in the
semi-infinite gap.

In two dimensions, the mathematical model is Eq. (1.1), or

iUz + Uxx + Uyy + V (x,y)U + σ |U |2U = 0, (4.1)

where the PT lattice V (x,y) is taken as (1.3) with V0 = 6.
Solitons in this model are sought of the form

U (x,y,z) = e−iμzu(x,y), (4.2)
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FIG. 7. (Color online) Power curves of fundamental 2D solitons
in the semi-infinite gap under focusing nonlinearity (σ = 1) for V0 =
6 and two W0 values of 0.2 and 0.3. The inset in the right panel is
amplification of the power curve near the first Bloch band in the same
panel.
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FIG. 8. (Color online) Fundamental 2D solitons (|u(x,y)|) (top)
and their linear-stability spectra (bottom) for three μ values in the
semi-infinite gap with σ = 1, V0 = 6, and W0 = 0.3. The power curve
of these solitons is shown in Fig. 7 (right panel).

where u(x,y) is a localized function, and μ is a real propagation
constant. These solitons as well as their linear-stability spectra
can be obtained by numerical methods similar to the 1D case.
The phase transition point in this 2D model is also W0 = 0.5,
above which all solitons are linearly unstable. Thus we only
consider W0 < 0.5 below.

For simplicity we only consider 2D fundamental PT
solitons in the semi-infinite gap under focusing nonlinearity
(σ = 1). These fundamental solitons possess the PT symme-
try u∗(x,y) = u(−x,−y), and their real parts have a single
dominant peak. Profiles of such solitons can be found in Fig. 8
(upper panel) later. We find that these fundamental solitons are
stable only on a finite μ interval even for small values of W0.
In addition, this stable region shrinks as W0 increases and
totally disappears when W0 > Wb ≈ 0.47. To demonstrate,
power curves of these solitons as well as their stability regions
at two W0 values of 0.2 and 0.3 are displayed in Fig. 7. It is
seen that the stable region is finite even though the existence
region of solitons is infinite. In addition, as W0 increases from
0.2 to 0.3, the stable region has shortened by several times.
For each W0, there are two unstable regions, one located at
large negative μ values, and the other one located near the
first Bloch band. For large negative values of μ the instability
is due to a quadruple of complex eigenvalues, whereas for
μ values near the first band, the instability is due to a pair
of real eigenvalues. Examples of the spectrum in each region
are shown in Fig. 8 with W0 = 0.3. We see that in this 2D
case, even the fundamental solitons in the semi-infinite gap
are destabilized by the addition of the gain-loss component in
the lattice.

V. NONLINEAR EVOLUTION OF PT SOLITONS
UNDER PERTURBATIONS

In this section, we examine the nonlinear evolution of PT
solitons under weak perturbations. We find that when a PT
soliton is linearly stable, then it is also nonlinearly stable
and propagates robustly against perturbations. If the soliton
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FIG. 9. (Color online) Left: Nonlinear evolution of the sta-
ble 1D soliton in Fig. 3 under 5% random noise perturbations.
Right: Nonlinear evolution of the unstable 1D soliton in Fig. 5 (with
μ = −1.7) under 5% random noise perturbations. Shown is the field
|U (x,z)| in the (x,z) plane.

is linearly unstable, then it breaks up under perturbations, and
its amplitude and energy can grow unbounded over distance.

First we consider the 1D fundamental soliton shown in
Fig. 3, which resides in the semi-infinite gap under focusing
nonlinearity and is linearly stable. We perturb it by 5% random
noise perturbations and then simulate its evolution in Eq. (3.1).
The simulation result is shown in Fig. 9 (left). We can see
that even after z = 100 units of propagation, this soliton
remains robust and does not break up. Thus this soliton is
also nonlinearly stable. Next we consider the 1D fundamental
soliton shown in Fig. 5, which resides in the first gap under
defocusing nonlinearity and is linearly unstable. When this
soliton is perturbed by 5% random noise perturbations, its
evolution is shown in Fig. 9 (right). It is seen that this soliton
quickly blows up and spreads out, thus is obviously nonlinearly
unstable. Notice that the peak amplitude and energy of
this perturbed soliton steadily increase without bound over
distance. This indicates that the gain-loss component of the
PT lattice steadily feeds energy into the solution. Recall that
the W0 value in this case is below the phase transition point,
thus linear waves do not grow. Consequently the energy growth
in this evolution is solely due to the nonlinear effects.
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0
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10

15

z

P

FIG. 10. (Color online) Nonlinear evolution of the unstable
2D soliton in Fig. 8 (with μ = −10) under 5% random noise
perturbations. Left: Power evolution vs distance z. Right: Solution
profiles at two distances z = 6.6 and 7.3.

Lastly we consider the 2D fundamental soliton shown in
Fig. 8 (left panel), which resides in the semi-infinite gap
under focusing nonlinearity and is linearly unstable. When
this soliton is perturbed by 5% random noise perturbations, its
evolution is shown in Fig. 10. It is seen that the power (and peak
amplitude) of this perturbed soliton also grows oscillatorily
without bound, thus this soliton is nonlinearly unstable. This
oscillatory growth occurs since the unstable eigenvalues of this
soliton are complex [see Fig. 8 (lower left panel)].

VI. SUMMARY

In summary, we have analyzed the linear phase transition
and nonlinear solitons in PT -symmetric photonic lattices. We
have shown that at the phase transition point, an infinite number
of linear Bloch bands turn complex simultaneously. We have
also shown that while continuous ranges of stable solitons
can exist in PT lattices, increasing the gain-loss component
of the lattice has an overall destabilizing effect on soliton
propagation. In addition, we have shown that when unstable
PT solitons are perturbed, the energy of the solution can grow
unbounded even though the PT lattice is below the phase
transition point.
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APPENDIX A: CALCULATION OF EIGENVALUE
BIFURCATIONS AT THE PHASE TRANSITION POINT

In this Appendix, we calculate eigenvalue bifurcations at the
phase transition point in Eq. (2.10) by perturbation methods.
The solution u(x) to this equation is required to be π or 2π

periodic, and perturbation expansions for u(x) and eigenvalue
μ are as given in Eq. (2.11).

Let us define the operator

L = ∂xx + n2
0 + V0

2
e2ix . (A1)

After substituting expansions (2.11) into Eq. (2.10) and
collecting terms of the same order in ε1/2, we arrive at the
following system of linear equations:

Lu0 = 0, (A2a)

Lu1 = −n1u0, (A2b)

Lum = −i sin(2x)um−2 −
m∑

j=1

njum−j , (A2c)

for m = 2,3,4, . . .. The solution u0 is

u0(x) =
∞∑

m=−∞
amei(2m+n0)x, (A3)

where

am = (V0/8)m

m!(m + n0)!
for m � 0, (A4)
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and am = 0 for m < 0. This solution comes directly from
Eq. (2.8) by replacing the wave number k with the integer
n0. The remaining linear inhomogeneous equations (A2b)
and (A2c) for u1,u2, . . . will be solved by first imposing the
solvability condition due to the Fredholm alternative theorem
and then expanding the solution in terms of Fourier series.

The adjoint operator of L is

LA = ∂xx + n2
0 + V0

2
e−2ix , (A5)

and has kernel u∗
0 since LAu∗

0 = 0. The Fredholm alternative
theorem requires that the forcing terms in Eqs. (A2) be
orthogonal to u∗

0. As we have mentioned earlier, we are
concerned with π - and 2π -periodic solutions here and thus
define the inner product as

〈f (x),g(x)〉 = 1

2π

∫ π

−π

f (x)g∗(x)dx. (A6)

Using the fact that 〈eipx,eiqx〉 = δp,q for integers p,q, we
obtain the inner product

〈u0,u
∗
0〉 =

{
a2

0, n0 = 0,

0, n0 = 1,2,3, . . . .
(A7)

Equation (A2b) for u1 has the solvability condition

0 = −n1〈u0,u
∗
0〉. (A8)

Thus, when n0 = 0 then n1 = 0. For other n0 this solvability
condition is satisfied automatically and the solution u1 may be
formally written as

u1 = −n1L
−1u0. (A9)

Expanding L−1u0 into Fourier series

L−1u0 =
∞∑

m=−∞
bmei(2m+n0)x (A10)

and substituting it into L[L−1u0] = u0 we find that the
coefficients bm satisfy the recursion relation

−4(m2 + mn0)bm + V0

2
bm−1 = am (A11)

for all integers m. The relevant coefficients are

b−1 = 2

V0
a0, (A12a)

b−2 = − 16

V 2
0

(n0 − 1)a0, (A12b)

...

b−n0 = (−1)n0−1

4
(n0 − 1)!2

(
8

V0

)n0

a0, (A12c)

bm = 0 for m < −n0. (A12d)

Notice that this series also terminates in the negative m

direction at m = −n0.
The equation (A2c) for u2 is

Lu2 = −i sin(2x)u0 − n1u1 − n2u0. (A13)

When n0 = 0 (hence n1 = u1 = 0), its solvability condition is

n2 = −〈i sin(2x)u0,u
∗
0〉

〈u0,u
∗
0〉

, (A14)

which gives n2 = V0/8. For n0 � 1, after substituting in the
solution (A9) and (A10) for u1, the solvability condition of
Eq. (A13) gives

n2
1 = 〈i sin(2x)u0,u

∗
0〉

〈L−1u0,u
∗
0〉

. (A15)

By rewriting i sin(2x) = 1
2 (ei2x − e−i2x) we may again use

the orthogonality of the Fourier modes to work out the inner
products explicitly,

〈i sin(2x)u0,u
∗
0〉 = − 1

2a2
0 for n0 = 1, (A16a)

〈i sin(2x)u0,u
∗
0〉 = 0 for n0 = 2,3,4, . . . , (A16b)

〈L−1u0,u
∗
0〉 = b−n0a0 for n0 = 1,2,3, . . . . (A16c)

Thus,

n1 = ±i
V

1/2
0

2
for n0 = 1, (A17)

and n1 = 0 for n0 > 1. This means that if n0 = 1 then n1 is
an imaginary number and, returning to the expansion for μ

in Eq. (2.11a), that μ is a complex number for W0 above the
phase transition point, ε > 0, and real below, ε < 0. This is
the bifurcation that occurs at the edge of the Brillouin zone
where the first and second bands merge (see Figs. 1 and 2).

For n0 = 1, we can proceed to solve Eq. (A13) for u2 by
Fourier expansion. Then from the solvability condition for the
u3 equation we can find that

n2 = V0

32
for n0 = 1.

Subsequently we can solve the u3 equation by Fourier expan-
sion, and from the solvability condition of the u4 equation we
further get

n3 = ±i

(
V

−1/2
0

4
+ V

3/2
0

29

)
for n0 = 1.

For n0 � 2 we formally write the solution u2 as

u2 = −L−1[i sin(2x)u0] − n2L
−1u0, (A18)

since we know that L−1[i sin(2x)u0] is well defined in view of
the orthogonality in Eq. (A16b). Expanding it into a Fourier
series

L−1[i sin(2x)u0] =
∞∑

m=−∞
cmei(2m+n0)x, (A19)

it is easy to find that the coefficients cm satisfy the recursion
relation

−4(m2 + mn0)cm + V0

2
cm−1 = 1

2
(am−1 − am+1),

(A20)

and

c−1 = − 1

8(n0 + 1)
a0, c−2 = − 2

(1 + n0)V0
a0.
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Again there are only a finite number of terms in the negative
m direction, i.e., cm = 0 for m < −n0.

For n0 � 2 (hence n1 = u1 = 0), Eq. (A2c) for u3 is

Lu3 = −n3u0, (A21)

thus

u3 = −n3L
−1u0, (A22)

and Eq. (A2c) for u4 is

Lu4 = −i sin(2x)u2 − n2u2 − n4u0. (A23)

After substituting in Eq. (A18) for u2 the solvability condition
is

0 = n2
2〈L−1u0,u

∗
0〉 + 2n2〈L−1i sin(2x)u0,u

∗
0〉

+ 〈i sin(2x)L−1i sin(2x)u0,u
∗
0〉, (A24)

with coefficients given by

〈L−1u0,u
∗
0〉 = b−n0a0, (A25a)

〈L−1i sin(2x)u0,u
∗
0〉 = c−n0a0, (A25b)

〈i sin(2x)L−1i sin(2x)u0,u
∗
0〉 = − 1

2 (c−n0a1 + c−n0+1a0).

(A25c)

For n0 = 2 this gives n2 = V0/24, −5V0/24. For n0 � 3
we find that n2 is a double root,

n2 = −V0

8

1

n2
0 − 1

. (A26)

At these n2 values, the solution u4 is well defined and is given
by

u4 = −L−1[i sin(2x)u2 + n2u2] − n4L
−1u0. (A27)

For n0 � 2, Eq. (A2c) for u5 is

Lu5 = −i sin(2x)u3 − n3u2 − n2u3 − n5u0. (A28)

After substituting in Eqs. (A18) and (A22) the solvability
condition for this u5 equation reduces down to

0 = n3[n2〈L−1u0,u
∗
0〉 + 〈L−1i sin(2x)u0,u

∗
0〉]. (A29)

Thus, for n0 = 2 we must have n3 = 0; and for n0 � 3 this
condition is satisfied automatically since n2 from Eq. (A26) is
a double root of Eq. (A24).

For n0 � 3, Eq. (A2c) for u6 is

Lu6 = −i sin(2x)u4 − n2u4 − n3u3 − n4u2 − n6u0. (A30)

Substituting in Eq. (A22) and noting that 〈u2,u
∗
0〉 = 0 [in view

of Eq. (A29)] we are left with the solvability condition

n2
3 = 〈u4[n2 + i sin(2x)],u∗

0〉
〈L−1u0,u

∗
0〉

. (A31)

This condition may be further simplified,

〈u4[n2 + i sin(2x)],u∗
0〉

= 〈u4,[n2 − i sin(2x)]u∗
0〉

= −〈i sin(2x)u2 + n2u2 − n4u0,u
∗
2〉

= −〈i sin(2x)u2,u
∗
2〉.

Thus for n0 = 3, we get

n3 = ±i
V

3/2
0

29
, (A32)

and for n0 > 3, we get n3 = 0. This shows that there is another
bifurcation point of complex eigenvalues at n0 = 3, where the
third band gap closes (see Figs. 1 and 2).

The results of the above perturbation calculations are
summarized in Table I of the main text. Continuing these
calculations to higher n0 values, we have found that the
coefficient n2m+1 is always imaginary for n0 = 2m + 1,
where m = 0,1,2, . . .. Thus complex eigenvalues bifurcate out
simultaneously from n0 = 1,3,5, . . . at the phase transition
point W0 = 0.5.

APPENDIX B: ANALYTICAL CRITERION FOR
ZERO-EIGENVALUE BIFURCATION OF SOLITONS IN

COMPLEX POTENTIALS

In real potentials [such as when W0 = 0 in Eq. (1.2)], the
power curve does more than just provide a convenient way
to catalog and parametrize a continuous family of solitons
for various values of the propagation constant μ. Specifically,
whenever the power curve has a local extremum, the zero
eigenvalue in the linear-stability spectrum of solitons then
bifurcates out along the real and imaginary axes on the two
sides of the power extremum, respectively, leading to a change
of stability at the power extremum (if no other unstable
eigenvalues exist) [17]. In this Appendix we consider the
extension of this concept to general complex potentials (which
include PT -symmetric lattices as special cases). The resulting
analytical criterion for zero-eigenvalue bifurcation will explain
the stability switchings in Figs. 5 and 7 (right side), as well as
the onset of real eigenvalues in Fig. 4 (right panel).

Let us begin with the eigenvalue problem (3.4) derived in
the main text,

iL
(

ũ

w̃

)
= λ

(
ũ

w̃

)
, (B1)

where we know that λ = 0 is always an eigenvalue with
algebraic multiplicity of at least 2 due to the phase invariance
of Eq. (1.1). The eigenfunction and generalized eigenfunction
of this zero eigenvalue associated with the phase invariance
can be written explicitly in terms of the soliton u(x),

L
(

u

−u∗

)
= 0 and L

(
uμ

u∗
μ

)
=

(
u

−u∗

)
.

Thus, for nonzero eigenvalues to bifurcate out from the origin,
λ = 0 must have algebraic multiplicity of at least 3 at that
point. A sufficient condition for this to occur is that there be a
second generalized eigenfunction ψ which solves

Lψ =
(

uμ

u∗
μ

)
. (B2)

We now use the Fredholm alternative theorem to derive the
solvability condition for Eq. (B2). Let us denote the kernel of
the adjoint operator LA as φ(A), i.e.,

LAφ(A) = 0, (B3)
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where the adjoint operator is

LA = L∗T . (B4)

Here the superscript T stands for the transpose of a matrix.
Then the solvability condition of Eq. (B2) is〈(

uμ

u∗
μ

)
, φ(A)

〉
= 0, (B5)

which is a sufficient condition (criterion) for zero-eigenvalue
bifurcation in general complex potentials.

For real potentials, it is easy to see that

φ(A) =
(

u(x)

u∗(x)

)
, (B6)

thus the above criterion reduces to P ′(μ) = 0, i.e., the
extremum of the power curve [17]. For general complex
potentials, however, φ(A) is not equal to the above ex-
pression, thus stability switching will no longer occur at
a power extremum. An example of this has been seen in
Fig. 5.
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